langchain/libs/partners/openai/tests/unit_tests/llms/test_base.py
ccurme 4cc2f6b807
openai[patch]: guard against None text completions in BaseOpenAI (#31514)
Some chat completions APIs will return null `text` output (even though
this is typed as string).
2025-06-06 09:14:37 -04:00

109 lines
3.2 KiB
Python

import os
import pytest
from langchain_core.outputs import GenerationChunk
from langchain_openai import OpenAI
from langchain_openai.llms.base import _stream_response_to_generation_chunk
os.environ["OPENAI_API_KEY"] = "foo"
def test_openai_model_param() -> None:
llm = OpenAI(model="foo")
assert llm.model_name == "foo"
llm = OpenAI(model_name="foo") # type: ignore[call-arg]
assert llm.model_name == "foo"
# Test standard tracing params
ls_params = llm._get_ls_params()
assert ls_params == {
"ls_provider": "openai",
"ls_model_type": "llm",
"ls_model_name": "foo",
"ls_temperature": 0.7,
"ls_max_tokens": 256,
}
def test_openai_model_kwargs() -> None:
llm = OpenAI(model_kwargs={"foo": "bar"})
assert llm.model_kwargs == {"foo": "bar"}
def test_openai_fields_in_model_kwargs() -> None:
"""Test that for backwards compatibility fields can be passed in as model_kwargs."""
llm = OpenAI(model_kwargs={"model_name": "foo"})
assert llm.model_name == "foo"
llm = OpenAI(model_kwargs={"model": "foo"})
assert llm.model_name == "foo"
def test_openai_incorrect_field() -> None:
with pytest.warns(match="not default parameter"):
llm = OpenAI(foo="bar") # type: ignore[call-arg]
assert llm.model_kwargs == {"foo": "bar"}
@pytest.fixture
def mock_completion() -> dict:
return {
"id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ",
"object": "text_completion",
"created": 1689989000,
"model": "text-davinci-003",
"choices": [
{"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3},
}
@pytest.mark.parametrize("model", ["gpt-3.5-turbo-instruct"])
def test_get_token_ids(model: str) -> None:
OpenAI(model=model).get_token_ids("foo")
return
def test_custom_token_counting() -> None:
def token_encoder(text: str) -> list[int]:
return [1, 2, 3]
llm = OpenAI(custom_get_token_ids=token_encoder)
assert llm.get_token_ids("foo") == [1, 2, 3]
def test_stream_response_to_generation_chunk() -> None:
completion = {
"id": "cmpl-abc123",
"choices": [
{"finish_reason": None, "index": 0, "logprobs": None, "text": "foo"}
],
"created": 1749214401,
"model": "my-model",
"object": "text_completion",
"system_fingerprint": None,
"usage": None,
}
chunk = _stream_response_to_generation_chunk(completion)
assert chunk == GenerationChunk(
text="foo", generation_info={"finish_reason": None, "logprobs": None}
)
# Pathological completion with None text (e.g., from other providers)
completion = {
"id": "cmpl-abc123",
"choices": [
{"finish_reason": None, "index": 0, "logprobs": None, "text": None}
],
"created": 1749214401,
"model": "my-model",
"object": "text_completion",
"system_fingerprint": None,
"usage": None,
}
chunk = _stream_response_to_generation_chunk(completion)
assert chunk == GenerationChunk(
text="", generation_info={"finish_reason": None, "logprobs": None}
)