mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-20 09:57:32 +00:00
Some chat completions APIs will return null `text` output (even though this is typed as string).
109 lines
3.2 KiB
Python
109 lines
3.2 KiB
Python
import os
|
|
|
|
import pytest
|
|
from langchain_core.outputs import GenerationChunk
|
|
|
|
from langchain_openai import OpenAI
|
|
from langchain_openai.llms.base import _stream_response_to_generation_chunk
|
|
|
|
os.environ["OPENAI_API_KEY"] = "foo"
|
|
|
|
|
|
def test_openai_model_param() -> None:
|
|
llm = OpenAI(model="foo")
|
|
assert llm.model_name == "foo"
|
|
llm = OpenAI(model_name="foo") # type: ignore[call-arg]
|
|
assert llm.model_name == "foo"
|
|
|
|
# Test standard tracing params
|
|
ls_params = llm._get_ls_params()
|
|
assert ls_params == {
|
|
"ls_provider": "openai",
|
|
"ls_model_type": "llm",
|
|
"ls_model_name": "foo",
|
|
"ls_temperature": 0.7,
|
|
"ls_max_tokens": 256,
|
|
}
|
|
|
|
|
|
def test_openai_model_kwargs() -> None:
|
|
llm = OpenAI(model_kwargs={"foo": "bar"})
|
|
assert llm.model_kwargs == {"foo": "bar"}
|
|
|
|
|
|
def test_openai_fields_in_model_kwargs() -> None:
|
|
"""Test that for backwards compatibility fields can be passed in as model_kwargs."""
|
|
llm = OpenAI(model_kwargs={"model_name": "foo"})
|
|
assert llm.model_name == "foo"
|
|
llm = OpenAI(model_kwargs={"model": "foo"})
|
|
assert llm.model_name == "foo"
|
|
|
|
|
|
def test_openai_incorrect_field() -> None:
|
|
with pytest.warns(match="not default parameter"):
|
|
llm = OpenAI(foo="bar") # type: ignore[call-arg]
|
|
assert llm.model_kwargs == {"foo": "bar"}
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_completion() -> dict:
|
|
return {
|
|
"id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ",
|
|
"object": "text_completion",
|
|
"created": 1689989000,
|
|
"model": "text-davinci-003",
|
|
"choices": [
|
|
{"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"}
|
|
],
|
|
"usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3},
|
|
}
|
|
|
|
|
|
@pytest.mark.parametrize("model", ["gpt-3.5-turbo-instruct"])
|
|
def test_get_token_ids(model: str) -> None:
|
|
OpenAI(model=model).get_token_ids("foo")
|
|
return
|
|
|
|
|
|
def test_custom_token_counting() -> None:
|
|
def token_encoder(text: str) -> list[int]:
|
|
return [1, 2, 3]
|
|
|
|
llm = OpenAI(custom_get_token_ids=token_encoder)
|
|
assert llm.get_token_ids("foo") == [1, 2, 3]
|
|
|
|
|
|
def test_stream_response_to_generation_chunk() -> None:
|
|
completion = {
|
|
"id": "cmpl-abc123",
|
|
"choices": [
|
|
{"finish_reason": None, "index": 0, "logprobs": None, "text": "foo"}
|
|
],
|
|
"created": 1749214401,
|
|
"model": "my-model",
|
|
"object": "text_completion",
|
|
"system_fingerprint": None,
|
|
"usage": None,
|
|
}
|
|
chunk = _stream_response_to_generation_chunk(completion)
|
|
assert chunk == GenerationChunk(
|
|
text="foo", generation_info={"finish_reason": None, "logprobs": None}
|
|
)
|
|
|
|
# Pathological completion with None text (e.g., from other providers)
|
|
completion = {
|
|
"id": "cmpl-abc123",
|
|
"choices": [
|
|
{"finish_reason": None, "index": 0, "logprobs": None, "text": None}
|
|
],
|
|
"created": 1749214401,
|
|
"model": "my-model",
|
|
"object": "text_completion",
|
|
"system_fingerprint": None,
|
|
"usage": None,
|
|
}
|
|
chunk = _stream_response_to_generation_chunk(completion)
|
|
assert chunk == GenerationChunk(
|
|
text="", generation_info={"finish_reason": None, "logprobs": None}
|
|
)
|