Files
Mason Daugherty 31eeb50ce0 chore: drop UP045 (#33362)
Python 3.9 EOL
2025-10-08 21:17:53 -04:00

69 lines
2.5 KiB
Python

from typing import TypeAlias
import numpy as np
Matrix: TypeAlias = list[list[float]] | list[np.ndarray] | np.ndarray
def maximal_marginal_relevance(
query_embedding: np.ndarray,
embedding_list: list,
lambda_mult: float = 0.5,
k: int = 4,
) -> list[int]:
"""Calculate maximal marginal relevance."""
if min(k, len(embedding_list)) <= 0:
return []
if query_embedding.ndim == 1:
query_embedding = np.expand_dims(query_embedding, axis=0)
similarity_to_query = cosine_similarity(query_embedding, embedding_list)[0]
most_similar = int(np.argmax(similarity_to_query))
idxs = [most_similar]
selected = np.array([embedding_list[most_similar]])
while len(idxs) < min(k, len(embedding_list)):
best_score = -np.inf
idx_to_add = -1
similarity_to_selected = cosine_similarity(embedding_list, selected)
for i, query_score in enumerate(similarity_to_query):
if i in idxs:
continue
redundant_score = max(similarity_to_selected[i])
equation_score = (
lambda_mult * query_score - (1 - lambda_mult) * redundant_score
)
if equation_score > best_score:
best_score = equation_score
idx_to_add = i
idxs.append(idx_to_add)
selected = np.append(selected, [embedding_list[idx_to_add]], axis=0)
return idxs
def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: # noqa: N803
"""Row-wise cosine similarity between two equal-width matrices."""
if len(X) == 0 or len(Y) == 0:
return np.array([])
x: np.ndarray = np.array(X)
y: np.ndarray = np.array(Y)
if x.shape[1] != y.shape[1]:
msg = (
f"Number of columns in X and Y must be the same. X has shape {x.shape} "
f"and Y has shape {y.shape}."
)
raise ValueError(msg)
try:
import simsimd as simd # noqa: PLC0415
x = np.array(x, dtype=np.float32)
y = np.array(y, dtype=np.float32)
return 1 - np.array(simd.cdist(x, y, metric="cosine"))
except ImportError:
x_norm = np.linalg.norm(x, axis=1)
y_norm = np.linalg.norm(y, axis=1)
# Ignore divide by zero errors run time warnings as those are handled below.
with np.errstate(divide="ignore", invalid="ignore"):
similarity = np.dot(x, y.T) / np.outer(x_norm, y_norm)
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
return similarity