langchain/libs/partners/exa/langchain_exa/retrievers.py
Ishan Goswami f16456139b
exa docs and python package update (#31307)
Added support for new Exa API features. Updated Exa docs and python
package (langchain-exa).

Description

Added support for new Exa API features in the langchain-exa package:
- Added max_characters option for text content
- Added support for summary and custom summary prompts
- Added livecrawl option with "always", "fallback", "never" settings
- Added "auto" option for search type
- Updated documentation and tests

Dependencies
- No new dependencies required. Using existing features from exa-py.

twitter: @theishangoswami

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2025-05-21 21:33:30 -04:00

110 lines
4.2 KiB
Python

from typing import Any, Literal, Optional, Union
from exa_py import Exa # type: ignore[untyped-import]
from exa_py.api import (
HighlightsContentsOptions, # type: ignore[untyped-import]
TextContentsOptions, # type: ignore[untyped-import]
)
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from pydantic import Field, SecretStr, model_validator
from langchain_exa._utilities import initialize_client
def _get_metadata(result: Any) -> dict[str, Any]:
"""Get the metadata from a result object."""
metadata = {
"title": result.title,
"url": result.url,
"id": result.id,
"score": result.score,
"published_date": result.published_date,
"author": result.author,
}
if getattr(result, "highlights"):
metadata["highlights"] = result.highlights
if getattr(result, "highlight_scores"):
metadata["highlight_scores"] = result.highlight_scores
if getattr(result, "summary"):
metadata["summary"] = result.summary
return metadata
class ExaSearchRetriever(BaseRetriever):
"""Exa Search retriever."""
k: int = 10 # num_results
"""The number of search results to return (1 to 100)."""
include_domains: Optional[list[str]] = None
"""A list of domains to include in the search."""
exclude_domains: Optional[list[str]] = None
"""A list of domains to exclude from the search."""
start_crawl_date: Optional[str] = None
"""The start date for the crawl (in YYYY-MM-DD format)."""
end_crawl_date: Optional[str] = None
"""The end date for the crawl (in YYYY-MM-DD format)."""
start_published_date: Optional[str] = None
"""The start date for when the document was published (in YYYY-MM-DD format)."""
end_published_date: Optional[str] = None
"""The end date for when the document was published (in YYYY-MM-DD format)."""
use_autoprompt: Optional[bool] = None
"""Whether to use autoprompt for the search."""
type: str = "neural"
"""The type of search, 'keyword', 'neural', or 'auto'. Default: neural"""
highlights: Optional[Union[HighlightsContentsOptions, bool]] = None
"""Whether to set the page content to the highlights of the results."""
text_contents_options: Union[TextContentsOptions, dict[str, Any], Literal[True]] = (
True
)
"""How to set the page content of the results. Can be True or a dict with options
like max_characters."""
livecrawl: Optional[Literal["always", "fallback", "never"]] = None
"""Option to crawl live webpages if content is not in the index. Options: "always",
"fallback", "never"."""
summary: Optional[Union[bool, dict[str, str]]] = None
"""Whether to include a summary of the content. Can be a boolean or a dict with a
custom query."""
client: Exa = Field(default=None)
exa_api_key: SecretStr = Field(default=None)
exa_base_url: Optional[str] = None
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: dict) -> Any:
"""Validate the environment."""
values = initialize_client(values)
return values
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> list[Document]:
response = self.client.search_and_contents( # type: ignore[misc]
query,
num_results=self.k,
text=self.text_contents_options,
highlights=self.highlights, # type: ignore
include_domains=self.include_domains,
exclude_domains=self.exclude_domains,
start_crawl_date=self.start_crawl_date,
end_crawl_date=self.end_crawl_date,
start_published_date=self.start_published_date,
end_published_date=self.end_published_date,
use_autoprompt=self.use_autoprompt,
livecrawl=self.livecrawl,
summary=self.summary,
type=self.type,
)
results = response.results
return [
Document(
page_content=(result.text),
metadata=_get_metadata(result),
)
for result in results
]