langchain/libs/partners/ai21/tests/unit_tests/conftest.py
Asaf Joseph Gardin 642975dd9f
partners: AI21 Labs Jamba Support (#20815)
Description: Added support for AI21 new model - Jamba
Twitter handle: https://github.com/AI21Labs

---------

Co-authored-by: Asaf Gardin <asafg@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-05-01 10:12:44 -07:00

203 lines
5.8 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
from contextlib import contextmanager
from typing import Generator
from unittest.mock import Mock
import pytest
from ai21 import AI21Client, AI21EnvConfig
from ai21.models import (
AnswerResponse,
ChatOutput,
ChatResponse,
Completion,
CompletionData,
CompletionFinishReason,
CompletionsResponse,
FinishReason,
Penalty,
RoleType,
SegmentationResponse,
)
from ai21.models.responses.segmentation_response import Segment
from pytest_mock import MockerFixture
J2_CHAT_MODEL_NAME = "j2-ultra"
JAMBA_CHAT_MODEL_NAME = "jamba-instruct-preview"
DUMMY_API_KEY = "test_api_key"
BASIC_EXAMPLE_LLM_PARAMETERS = {
"num_results": 3,
"max_tokens": 20,
"min_tokens": 10,
"temperature": 0.5,
"top_p": 0.5,
"top_k_return": 0,
"frequency_penalty": Penalty(scale=0.2, apply_to_numbers=True),
"presence_penalty": Penalty(scale=0.2, apply_to_stopwords=True),
"count_penalty": Penalty(
scale=0.2,
apply_to_punctuation=True,
apply_to_emojis=True,
),
}
BASIC_EXAMPLE_CHAT_PARAMETERS = {
"num_results": 3,
"max_tokens": 20,
"min_tokens": 10,
"temperature": 0.5,
"top_p": 0.5,
"top_k_return": 0,
"frequency_penalty": Penalty(scale=0.2, apply_to_numbers=True),
"presence_penalty": Penalty(scale=0.2, apply_to_stopwords=True),
"count_penalty": Penalty(
scale=0.2,
apply_to_punctuation=True,
apply_to_emojis=True,
),
"n": 3,
}
SEGMENTS = [
Segment(
segment_type="normal_text",
segment_text=(
"The original full name of the franchise is Pocket Monsters "
"(ポケットモンスター, Poketto Monsutā), which was abbreviated to "
"Pokemon during development of the original games.\n\nWhen the "
"franchise was released internationally, the short form of the "
"title was used, with an acute accent (´) over the e to aid "
"in pronunciation."
),
),
Segment(
segment_type="normal_text",
segment_text=(
"Pokémon refers to both the franchise itself and the creatures "
"within its fictional universe.\n\nAs a noun, it is identical in "
"both the singular and plural, as is every individual species "
'name;[10] it is grammatically correct to say "one Pokémon" '
'and "many Pokémon", as well as "one Pikachu" and "many '
'Pikachu".\n\nIn English, Pokémon may be pronounced either '
"/'powkɛmon/ (poe-keh-mon) or /'powkɪmon/ (poe-key-mon)."
),
),
]
BASIC_EXAMPLE_LLM_PARAMETERS_AS_DICT = {
"num_results": 3,
"max_tokens": 20,
"min_tokens": 10,
"temperature": 0.5,
"top_p": 0.5,
"top_k_return": 0,
"frequency_penalty": Penalty(scale=0.2, apply_to_numbers=True).to_dict(),
"presence_penalty": Penalty(scale=0.2, apply_to_stopwords=True).to_dict(),
"count_penalty": Penalty(
scale=0.2,
apply_to_punctuation=True,
apply_to_emojis=True,
).to_dict(),
}
BASIC_EXAMPLE_CHAT_PARAMETERS_AS_DICT = {
"num_results": 3,
"max_tokens": 20,
"min_tokens": 10,
"temperature": 0.5,
"top_p": 0.5,
"top_k_return": 0,
"frequency_penalty": Penalty(scale=0.2, apply_to_numbers=True).to_dict(),
"presence_penalty": Penalty(scale=0.2, apply_to_stopwords=True).to_dict(),
"count_penalty": Penalty(
scale=0.2,
apply_to_punctuation=True,
apply_to_emojis=True,
).to_dict(),
"n": 3,
}
@pytest.fixture
def mocked_completion_response(mocker: MockerFixture) -> Mock:
mocked_response = mocker.MagicMock(spec=CompletionsResponse)
mocked_response.prompt = "this is a test prompt"
mocked_response.completions = [
Completion(
data=CompletionData(text="test", tokens=[]),
finish_reason=CompletionFinishReason(reason=None, length=None),
)
]
return mocked_response
@pytest.fixture
def mock_client_with_completion(
mocker: MockerFixture, mocked_completion_response: Mock
) -> Mock:
mock_client = mocker.MagicMock(spec=AI21Client)
mock_client.completion = mocker.MagicMock()
mock_client.completion.create.side_effect = [
mocked_completion_response,
mocked_completion_response,
]
mock_client.count_tokens.side_effect = [10, 20]
return mock_client
@pytest.fixture
def mock_client_with_chat(mocker: MockerFixture) -> Mock:
mock_client = mocker.MagicMock(spec=AI21Client)
mock_client.chat = mocker.MagicMock()
output = ChatOutput(
text="Hello Pickle Rick!",
role=RoleType.ASSISTANT,
finish_reason=FinishReason(reason="testing"),
)
mock_client.chat.create.return_value = ChatResponse(outputs=[output])
return mock_client
@contextmanager
def temporarily_unset_api_key() -> Generator:
"""
Unset and set environment key for testing purpose for when an API KEY is not set
"""
api_key = AI21EnvConfig.api_key
AI21EnvConfig.api_key = None
os.environ.pop("AI21_API_KEY", None)
yield
if api_key is not None:
AI21EnvConfig.api_key = api_key
os.environ["AI21_API_KEY"] = api_key
@pytest.fixture
def mock_client_with_contextual_answers(mocker: MockerFixture) -> Mock:
mock_client = mocker.MagicMock(spec=AI21Client)
mock_client.answer = mocker.MagicMock()
mock_client.answer.create.return_value = AnswerResponse(
id="some_id",
answer="some answer",
answer_in_context=False,
)
return mock_client
@pytest.fixture
def mock_client_with_semantic_text_splitter(mocker: MockerFixture) -> Mock:
mock_client = mocker.MagicMock(spec=AI21Client)
mock_client.segmentation = mocker.MagicMock()
mock_client.segmentation.create.return_value = SegmentationResponse(
id="12345",
segments=SEGMENTS,
)
return mock_client