langchain/libs/experimental/langchain_experimental/tot/thought_generation.py
Bagatur a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00

96 lines
3.1 KiB
Python

"""
We provide two strategies for generating thoughts in the Tree of Thoughts (ToT)
framework to avoid repetition:
These strategies ensure that the language model generates diverse and
non-repeating thoughts, which are crucial for problem-solving tasks that require
exploration.
"""
from abc import abstractmethod
from typing import Any, Dict, List, Tuple
from langchain.chains.llm import LLMChain
from langchain_core.prompts.base import BasePromptTemplate
from langchain_experimental.pydantic_v1 import Field
from langchain_experimental.tot.prompts import get_cot_prompt, get_propose_prompt
class BaseThoughtGenerationStrategy(LLMChain):
"""
Base class for a thought generation strategy.
"""
c: int = 3
"""The number of children thoughts to propose at each step."""
@abstractmethod
def next_thought(
self,
problem_description: str,
thoughts_path: Tuple[str, ...] = (),
**kwargs: Any,
) -> str:
"""
Generate the next thought given the problem description and the thoughts
generated so far.
"""
class SampleCoTStrategy(BaseThoughtGenerationStrategy):
"""
Sample strategy from a Chain-of-Thought (CoT) prompt.
This strategy works better when the thought space is rich, such as when each
thought is a paragraph. Independent and identically distributed samples
lead to diversity, which helps to avoid repetition.
"""
prompt: BasePromptTemplate = Field(default_factory=get_cot_prompt)
def next_thought(
self,
problem_description: str,
thoughts_path: Tuple[str, ...] = (),
**kwargs: Any,
) -> str:
response_text = self.predict_and_parse(
problem_description=problem_description, thoughts=thoughts_path, **kwargs
)
return response_text if isinstance(response_text, str) else ""
class ProposePromptStrategy(BaseThoughtGenerationStrategy):
"""
Strategy that is sequentially using a "propose prompt".
This strategy works better when the thought space is more constrained, such
as when each thought is just a word or a line. Proposing different thoughts
in the same prompt completion helps to avoid duplication.
"""
prompt: BasePromptTemplate = Field(default_factory=get_propose_prompt)
tot_memory: Dict[Tuple[str, ...], List[str]] = Field(default_factory=dict)
def next_thought(
self,
problem_description: str,
thoughts_path: Tuple[str, ...] = (),
**kwargs: Any,
) -> str:
if thoughts_path not in self.tot_memory or not self.tot_memory[thoughts_path]:
new_thoughts = self.predict_and_parse(
problem_description=problem_description,
thoughts=thoughts_path,
n=self.c,
**kwargs,
)
if not new_thoughts:
return ""
if isinstance(new_thoughts, list):
self.tot_memory[thoughts_path] = new_thoughts[::-1]
else:
return ""
return self.tot_memory[thoughts_path].pop()