mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-05 15:18:32 +00:00
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
254 lines
9.3 KiB
Python
254 lines
9.3 KiB
Python
"""Question answering over a graph."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain_core.callbacks.manager import CallbackManager, CallbackManagerForChainRun
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.prompts import BasePromptTemplate
|
|
from langchain_core.prompts.prompt import PromptTemplate
|
|
from pydantic import Field
|
|
|
|
from langchain_community.chains.graph_qa.prompts import (
|
|
CYPHER_QA_PROMPT,
|
|
GRAPHDB_SPARQL_FIX_TEMPLATE,
|
|
GREMLIN_GENERATION_PROMPT,
|
|
)
|
|
from langchain_community.graphs import GremlinGraph
|
|
|
|
INTERMEDIATE_STEPS_KEY = "intermediate_steps"
|
|
|
|
|
|
def extract_gremlin(text: str) -> str:
|
|
"""Extract Gremlin code from a text.
|
|
|
|
Args:
|
|
text: Text to extract Gremlin code from.
|
|
|
|
Returns:
|
|
Gremlin code extracted from the text.
|
|
"""
|
|
text = text.replace("`", "")
|
|
if text.startswith("gremlin"):
|
|
text = text[len("gremlin") :]
|
|
return text.replace("\n", "")
|
|
|
|
|
|
class GremlinQAChain(Chain):
|
|
"""Chain for question-answering against a graph by generating gremlin statements.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
graph: GremlinGraph = Field(exclude=True)
|
|
gremlin_generation_chain: LLMChain
|
|
qa_chain: LLMChain
|
|
gremlin_fix_chain: LLMChain
|
|
max_fix_retries: int = 3
|
|
input_key: str = "query" #: :meta private:
|
|
output_key: str = "result" #: :meta private:
|
|
top_k: int = 100
|
|
return_direct: bool = False
|
|
return_intermediate_steps: bool = False
|
|
|
|
allow_dangerous_requests: bool = False
|
|
"""Forced user opt-in to acknowledge that the chain can make dangerous requests.
|
|
|
|
*Security note*: Make sure that the database connection uses credentials
|
|
that are narrowly-scoped to only include necessary permissions.
|
|
Failure to do so may result in data corruption or loss, since the calling
|
|
code may attempt commands that would result in deletion, mutation
|
|
of data if appropriately prompted or reading sensitive data if such
|
|
data is present in the database.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this tool.
|
|
|
|
See https://python.langchain.com/docs/security for more information.
|
|
"""
|
|
|
|
def __init__(self, **kwargs: Any) -> None:
|
|
"""Initialize the chain."""
|
|
super().__init__(**kwargs)
|
|
if self.allow_dangerous_requests is not True:
|
|
raise ValueError(
|
|
"In order to use this chain, you must acknowledge that it can make "
|
|
"dangerous requests by setting `allow_dangerous_requests` to `True`."
|
|
"You must narrowly scope the permissions of the database connection "
|
|
"to only include necessary permissions. Failure to do so may result "
|
|
"in data corruption or loss or reading sensitive data if such data is "
|
|
"present in the database."
|
|
"Only use this chain if you understand the risks and have taken the "
|
|
"necessary precautions. "
|
|
"See https://python.langchain.com/docs/security for more information."
|
|
)
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Output keys.
|
|
|
|
:meta private:
|
|
"""
|
|
_output_keys = [self.output_key]
|
|
return _output_keys
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
*,
|
|
gremlin_fix_prompt: BasePromptTemplate = PromptTemplate(
|
|
input_variables=["error_message", "generated_sparql", "schema"],
|
|
template=GRAPHDB_SPARQL_FIX_TEMPLATE.replace("SPARQL", "Gremlin").replace(
|
|
"in Turtle format", ""
|
|
),
|
|
),
|
|
qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT,
|
|
gremlin_prompt: BasePromptTemplate = GREMLIN_GENERATION_PROMPT,
|
|
**kwargs: Any,
|
|
) -> GremlinQAChain:
|
|
"""Initialize from LLM."""
|
|
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
|
gremlin_generation_chain = LLMChain(llm=llm, prompt=gremlin_prompt)
|
|
gremlinl_fix_chain = LLMChain(llm=llm, prompt=gremlin_fix_prompt)
|
|
return cls(
|
|
qa_chain=qa_chain,
|
|
gremlin_generation_chain=gremlin_generation_chain,
|
|
gremlin_fix_chain=gremlinl_fix_chain,
|
|
**kwargs,
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, str]:
|
|
"""Generate gremlin statement, use it to look up in db and answer question."""
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
callbacks = _run_manager.get_child()
|
|
question = inputs[self.input_key]
|
|
|
|
intermediate_steps: List = []
|
|
|
|
chain_response = self.gremlin_generation_chain.invoke(
|
|
{"question": question, "schema": self.graph.get_schema}, callbacks=callbacks
|
|
)
|
|
|
|
generated_gremlin = extract_gremlin(
|
|
chain_response[self.gremlin_generation_chain.output_key]
|
|
)
|
|
|
|
_run_manager.on_text("Generated gremlin:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
generated_gremlin, color="green", end="\n", verbose=self.verbose
|
|
)
|
|
|
|
intermediate_steps.append({"query": generated_gremlin})
|
|
|
|
if generated_gremlin:
|
|
context = self.execute_with_retry(
|
|
_run_manager, callbacks, generated_gremlin
|
|
)[: self.top_k]
|
|
else:
|
|
context = []
|
|
|
|
if self.return_direct:
|
|
final_result = context
|
|
else:
|
|
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
str(context), color="green", end="\n", verbose=self.verbose
|
|
)
|
|
|
|
intermediate_steps.append({"context": context})
|
|
|
|
result = self.qa_chain.invoke(
|
|
{"question": question, "context": context},
|
|
callbacks=callbacks,
|
|
)
|
|
final_result = result[self.qa_chain.output_key]
|
|
|
|
chain_result: Dict[str, Any] = {self.output_key: final_result}
|
|
if self.return_intermediate_steps:
|
|
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
|
|
|
|
return chain_result
|
|
|
|
def execute_query(self, query: str) -> List[Any]:
|
|
try:
|
|
return self.graph.query(query)
|
|
except Exception as e:
|
|
if hasattr(e, "status_message"):
|
|
raise ValueError(e.status_message)
|
|
else:
|
|
raise ValueError(str(e))
|
|
|
|
def execute_with_retry(
|
|
self,
|
|
_run_manager: CallbackManagerForChainRun,
|
|
callbacks: CallbackManager,
|
|
generated_gremlin: str,
|
|
) -> List[Any]:
|
|
try:
|
|
return self.execute_query(generated_gremlin)
|
|
except Exception as e:
|
|
retries = 0
|
|
error_message = str(e)
|
|
self.log_invalid_query(_run_manager, generated_gremlin, error_message)
|
|
|
|
while retries < self.max_fix_retries:
|
|
try:
|
|
fix_chain_result = self.gremlin_fix_chain.invoke(
|
|
{
|
|
"error_message": error_message,
|
|
# we are borrowing template from sparql
|
|
"generated_sparql": generated_gremlin,
|
|
"schema": self.schema,
|
|
},
|
|
callbacks=callbacks,
|
|
)
|
|
fixed_gremlin = fix_chain_result[self.gremlin_fix_chain.output_key]
|
|
return self.execute_query(fixed_gremlin)
|
|
except Exception as e:
|
|
retries += 1
|
|
parse_exception = str(e)
|
|
self.log_invalid_query(_run_manager, fixed_gremlin, parse_exception)
|
|
|
|
raise ValueError("The generated Gremlin query is invalid.")
|
|
|
|
def log_invalid_query(
|
|
self,
|
|
_run_manager: CallbackManagerForChainRun,
|
|
generated_query: str,
|
|
error_message: str,
|
|
) -> None:
|
|
_run_manager.on_text("Invalid Gremlin query: ", end="\n", verbose=self.verbose)
|
|
_run_manager.on_text(
|
|
generated_query, color="red", end="\n", verbose=self.verbose
|
|
)
|
|
_run_manager.on_text(
|
|
"Gremlin Query Parse Error: ", end="\n", verbose=self.verbose
|
|
)
|
|
_run_manager.on_text(
|
|
error_message, color="red", end="\n\n", verbose=self.verbose
|
|
)
|