mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-04 14:48:07 +00:00
Thank you for contributing to LangChain! - **Description:** Add token_usage and model_name metadata to ChatZhipuAI stream() and astream() response - **Issue:** None - **Dependencies:** None - **Twitter handle:** None - [ ] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17. Co-authored-by: jianfehuang <jianfehuang@tencent.com>
887 lines
33 KiB
Python
887 lines
33 KiB
Python
"""ZhipuAI chat models wrapper."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
import time
|
|
from collections.abc import AsyncIterator, Iterator
|
|
from contextlib import asynccontextmanager, contextmanager
|
|
from operator import itemgetter
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
List,
|
|
Literal,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
SystemMessage,
|
|
SystemMessageChunk,
|
|
ToolMessage,
|
|
)
|
|
from langchain_core.output_parsers.base import OutputParserLike
|
|
from langchain_core.output_parsers.openai_tools import (
|
|
JsonOutputKeyToolsParser,
|
|
PydanticToolsParser,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
from pydantic import BaseModel, ConfigDict, Field, model_validator
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
API_TOKEN_TTL_SECONDS = 3 * 60
|
|
ZHIPUAI_API_BASE = "https://open.bigmodel.cn/api/paas/v4/chat/completions"
|
|
|
|
|
|
def _is_pydantic_class(obj: Any) -> bool:
|
|
return isinstance(obj, type) and issubclass(obj, BaseModel)
|
|
|
|
|
|
@contextmanager
|
|
def connect_sse(client: Any, method: str, url: str, **kwargs: Any) -> Iterator:
|
|
"""Context manager for connecting to an SSE stream.
|
|
|
|
Args:
|
|
client: The HTTP client.
|
|
method: The HTTP method.
|
|
url: The URL.
|
|
kwargs: Additional keyword arguments.
|
|
|
|
Yields:
|
|
The event source.
|
|
"""
|
|
from httpx_sse import EventSource
|
|
|
|
with client.stream(method, url, **kwargs) as response:
|
|
yield EventSource(response)
|
|
|
|
|
|
@asynccontextmanager
|
|
async def aconnect_sse(
|
|
client: Any, method: str, url: str, **kwargs: Any
|
|
) -> AsyncIterator:
|
|
"""Async context manager for connecting to an SSE stream.
|
|
|
|
Args:
|
|
client: The HTTP client.
|
|
method: The HTTP method.
|
|
url: The URL.
|
|
kwargs: Additional keyword arguments.
|
|
|
|
Yields:
|
|
The event source.
|
|
"""
|
|
from httpx_sse import EventSource
|
|
|
|
async with client.stream(method, url, **kwargs) as response:
|
|
yield EventSource(response)
|
|
|
|
|
|
def _get_jwt_token(api_key: str) -> str:
|
|
"""Gets JWT token for ZhipuAI API.
|
|
|
|
See 'https://open.bigmodel.cn/dev/api#nosdk'.
|
|
|
|
Args:
|
|
api_key: The API key for ZhipuAI API.
|
|
|
|
Returns:
|
|
The JWT token.
|
|
"""
|
|
try:
|
|
import jwt
|
|
except ImportError:
|
|
raise ImportError(
|
|
"jwt package not found, please install it with" "`pip install pyjwt`"
|
|
)
|
|
|
|
try:
|
|
id, secret = api_key.split(".")
|
|
except ValueError as err:
|
|
raise ValueError(f"Invalid API key: {api_key}") from err
|
|
|
|
payload = {
|
|
"api_key": id,
|
|
"exp": int(round(time.time() * 1000)) + API_TOKEN_TTL_SECONDS * 1000,
|
|
"timestamp": int(round(time.time() * 1000)),
|
|
}
|
|
|
|
return jwt.encode(
|
|
payload,
|
|
secret,
|
|
algorithm="HS256",
|
|
headers={"alg": "HS256", "sign_type": "SIGN"},
|
|
)
|
|
|
|
|
|
def _convert_dict_to_message(dct: Dict[str, Any]) -> BaseMessage:
|
|
role = dct.get("role")
|
|
content = dct.get("content", "")
|
|
if role == "system":
|
|
return SystemMessage(content=content)
|
|
if role == "user":
|
|
return HumanMessage(content=content)
|
|
if role == "assistant":
|
|
additional_kwargs = {}
|
|
tool_calls = dct.get("tool_calls", None)
|
|
if tool_calls is not None:
|
|
additional_kwargs["tool_calls"] = tool_calls
|
|
return AIMessage(content=content, additional_kwargs=additional_kwargs)
|
|
if role == "tool":
|
|
additional_kwargs = {}
|
|
if "name" in dct:
|
|
additional_kwargs["name"] = dct["name"]
|
|
return ToolMessage(
|
|
content=content,
|
|
tool_call_id=dct.get("tool_call_id"), # type: ignore[arg-type]
|
|
additional_kwargs=additional_kwargs,
|
|
)
|
|
return ChatMessage(role=role, content=content) # type: ignore[arg-type]
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> Dict[str, Any]:
|
|
"""Convert a LangChain message to a dictionary.
|
|
|
|
Args:
|
|
message: The LangChain message.
|
|
|
|
Returns:
|
|
The dictionary.
|
|
"""
|
|
message_dict: Dict[str, Any]
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
elif isinstance(message, ToolMessage):
|
|
message_dict = {
|
|
"role": "tool",
|
|
"content": message.content,
|
|
"tool_call_id": message.tool_call_id,
|
|
"name": message.name or message.additional_kwargs.get("name"),
|
|
}
|
|
else:
|
|
raise TypeError(f"Got unknown type '{message.__class__.__name__}'.")
|
|
return message_dict
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
dct: Dict[str, Any], default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
role = dct.get("role")
|
|
content = dct.get("content", "")
|
|
additional_kwargs = {}
|
|
tool_calls = dct.get("tool_calls", None)
|
|
if tool_calls is not None:
|
|
additional_kwargs["tool_calls"] = tool_calls
|
|
|
|
if role == "system" or default_class == SystemMessageChunk:
|
|
return SystemMessageChunk(content=content)
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content)
|
|
if role == "assistant" or default_class == AIMessageChunk:
|
|
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
|
|
if role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
|
|
return default_class(content=content) # type: ignore[call-arg]
|
|
|
|
|
|
def _truncate_params(payload: Dict[str, Any]) -> None:
|
|
"""Truncate temperature and top_p parameters between [0.01, 0.99].
|
|
|
|
ZhipuAI only support temperature / top_p between (0, 1) open interval,
|
|
so we truncate them to [0.01, 0.99].
|
|
"""
|
|
temperature = payload.get("temperature")
|
|
top_p = payload.get("top_p")
|
|
if temperature is not None:
|
|
payload["temperature"] = max(0.01, min(0.99, temperature))
|
|
if top_p is not None:
|
|
payload["top_p"] = max(0.01, min(0.99, top_p))
|
|
|
|
|
|
class ChatZhipuAI(BaseChatModel):
|
|
"""ZhipuAI chat model integration.
|
|
|
|
Setup:
|
|
Install ``PyJWT`` and set environment variable ``ZHIPUAI_API_KEY``
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install pyjwt
|
|
export ZHIPUAI_API_KEY="your-api-key"
|
|
|
|
Key init args — completion params:
|
|
model: Optional[str]
|
|
Name of ZhipuAI model to use.
|
|
temperature: float
|
|
Sampling temperature.
|
|
max_tokens: Optional[int]
|
|
Max number of tokens to generate.
|
|
|
|
Key init args — client params:
|
|
api_key: Optional[str]
|
|
ZhipuAI API key. If not passed in will be read from env var ZHIPUAI_API_KEY.
|
|
api_base: Optional[str]
|
|
Base URL for API requests.
|
|
|
|
See full list of supported init args and their descriptions in the params section.
|
|
|
|
Instantiate:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatZhipuAI
|
|
|
|
zhipuai_chat = ChatZhipuAI(
|
|
temperature=0.5,
|
|
api_key="your-api-key",
|
|
model="glm-4",
|
|
# api_base="...",
|
|
# other params...
|
|
)
|
|
|
|
Invoke:
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
("system", "你是一名专业的翻译家,可以将用户的中文翻译为英文。"),
|
|
("human", "我喜欢编程。"),
|
|
]
|
|
zhipuai_chat.invoke(messages)
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessage(content='I enjoy programming.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 23, 'total_tokens': 29}, 'model_name': 'glm-4', 'finish_reason': 'stop'}, id='run-c5d9af91-55c6-470e-9545-02b2fa0d7f9d-0')
|
|
|
|
Stream:
|
|
.. code-block:: python
|
|
|
|
for chunk in zhipuai_chat.stream(messages):
|
|
print(chunk)
|
|
|
|
.. code-block:: python
|
|
|
|
content='I' id='run-4df71729-618f-4e2b-a4ff-884682723082'
|
|
content=' enjoy' id='run-4df71729-618f-4e2b-a4ff-884682723082'
|
|
content=' programming' id='run-4df71729-618f-4e2b-a4ff-884682723082'
|
|
content='.' id='run-4df71729-618f-4e2b-a4ff-884682723082'
|
|
content='' response_metadata={'finish_reason': 'stop'} id='run-4df71729-618f-4e2b-a4ff-884682723082'
|
|
|
|
.. code-block:: python
|
|
|
|
stream = zhipuai_chat.stream(messages)
|
|
full = next(stream)
|
|
for chunk in stream:
|
|
full += chunk
|
|
full
|
|
|
|
.. code-block::
|
|
|
|
AIMessageChunk(content='I enjoy programming.', response_metadata={'finish_reason': 'stop'}, id='run-20b05040-a0b4-4715-8fdc-b39dba9bfb53')
|
|
|
|
Async:
|
|
.. code-block:: python
|
|
|
|
await zhipuai_chat.ainvoke(messages)
|
|
|
|
# stream:
|
|
# async for chunk in zhipuai_chat.astream(messages):
|
|
# print(chunk)
|
|
|
|
# batch:
|
|
# await zhipuai_chat.abatch([messages])
|
|
|
|
.. code-block:: python
|
|
|
|
[AIMessage(content='I enjoy programming.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 23, 'total_tokens': 29}, 'model_name': 'glm-4', 'finish_reason': 'stop'}, id='run-ba06af9d-4baa-40b2-9298-be9c62aa0849-0')]
|
|
|
|
Tool calling:
|
|
.. code-block:: python
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class GetWeather(BaseModel):
|
|
'''Get the current weather in a given location'''
|
|
|
|
location: str = Field(
|
|
..., description="The city and state, e.g. San Francisco, CA"
|
|
)
|
|
|
|
|
|
class GetPopulation(BaseModel):
|
|
'''Get the current population in a given location'''
|
|
|
|
location: str = Field(
|
|
..., description="The city and state, e.g. San Francisco, CA"
|
|
)
|
|
|
|
chat_with_tools = zhipuai_chat.bind_tools([GetWeather, GetPopulation])
|
|
ai_msg = chat_with_tools.invoke(
|
|
"Which city is hotter today and which is bigger: LA or NY?"
|
|
)
|
|
ai_msg.tool_calls
|
|
|
|
.. code-block:: python
|
|
|
|
[
|
|
{
|
|
'name': 'GetWeather',
|
|
'args': {'location': 'Los Angeles, CA'},
|
|
'id': 'call_202408222146464ea49ec8731145a9',
|
|
'type': 'tool_call'
|
|
}
|
|
]
|
|
|
|
Structured output:
|
|
.. code-block:: python
|
|
|
|
from typing import Optional
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class Joke(BaseModel):
|
|
'''Joke to tell user.'''
|
|
|
|
setup: str = Field(description="The setup of the joke")
|
|
punchline: str = Field(description="The punchline to the joke")
|
|
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
|
|
|
|
|
|
structured_chat = zhipuai_chat.with_structured_output(Joke)
|
|
structured_chat.invoke("Tell me a joke about cats")
|
|
|
|
.. code-block:: python
|
|
|
|
Joke(setup='What do cats like to eat for breakfast?', punchline='Mice Krispies!', rating=None)
|
|
|
|
Response metadata
|
|
.. code-block:: python
|
|
|
|
ai_msg = zhipuai_chat.invoke(messages)
|
|
ai_msg.response_metadata
|
|
|
|
.. code-block:: python
|
|
|
|
{'token_usage': {'completion_tokens': 6,
|
|
'prompt_tokens': 23,
|
|
'total_tokens': 29},
|
|
'model_name': 'glm-4',
|
|
'finish_reason': 'stop'}
|
|
|
|
""" # noqa: E501
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"zhipuai_api_key": "ZHIPUAI_API_KEY"}
|
|
|
|
@classmethod
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
"""Get the namespace of the langchain object."""
|
|
return ["langchain", "chat_models", "zhipuai"]
|
|
|
|
@property
|
|
def lc_attributes(self) -> Dict[str, Any]:
|
|
attributes: Dict[str, Any] = {}
|
|
|
|
if self.zhipuai_api_base:
|
|
attributes["zhipuai_api_base"] = self.zhipuai_api_base
|
|
|
|
return attributes
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return the type of chat model."""
|
|
return "zhipuai-chat"
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
params = {
|
|
"model": self.model_name,
|
|
"stream": self.streaming,
|
|
"temperature": self.temperature,
|
|
}
|
|
if self.max_tokens is not None:
|
|
params["max_tokens"] = self.max_tokens
|
|
return params
|
|
|
|
# client:
|
|
zhipuai_api_key: Optional[str] = Field(default=None, alias="api_key")
|
|
"""Automatically inferred from env var `ZHIPUAI_API_KEY` if not provided."""
|
|
zhipuai_api_base: Optional[str] = Field(default=None, alias="api_base")
|
|
"""Base URL path for API requests, leave blank if not using a proxy or service
|
|
emulator.
|
|
"""
|
|
|
|
model_name: Optional[str] = Field(default="glm-4", alias="model")
|
|
"""
|
|
Model name to use, see 'https://open.bigmodel.cn/dev/api#language'.
|
|
Alternatively, you can use any fine-tuned model from the GLM series.
|
|
"""
|
|
|
|
temperature: float = 0.95
|
|
"""
|
|
What sampling temperature to use. The value ranges from 0.0 to 1.0 and cannot
|
|
be equal to 0.
|
|
The larger the value, the more random and creative the output; The smaller
|
|
the value, the more stable or certain the output will be.
|
|
You are advised to adjust top_p or temperature parameters based on application
|
|
scenarios, but do not adjust the two parameters at the same time.
|
|
"""
|
|
|
|
top_p: float = 0.7
|
|
"""
|
|
Another method of sampling temperature is called nuclear sampling. The value
|
|
ranges from 0.0 to 1.0 and cannot be equal to 0 or 1.
|
|
The model considers the results with top_p probability quality tokens.
|
|
For example, 0.1 means that the model decoder only considers tokens from the
|
|
top 10% probability of the candidate set.
|
|
You are advised to adjust top_p or temperature parameters based on application
|
|
scenarios, but do not adjust the two parameters at the same time.
|
|
"""
|
|
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
max_tokens: Optional[int] = None
|
|
"""Maximum number of tokens to generate."""
|
|
|
|
model_config = ConfigDict(
|
|
populate_by_name=True,
|
|
)
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_environment(cls, values: Dict[str, Any]) -> Any:
|
|
values["zhipuai_api_key"] = get_from_dict_or_env(
|
|
values, ["zhipuai_api_key", "api_key"], "ZHIPUAI_API_KEY"
|
|
)
|
|
values["zhipuai_api_base"] = get_from_dict_or_env(
|
|
values, "zhipuai_api_base", "ZHIPUAI_API_BASE", default=ZHIPUAI_API_BASE
|
|
)
|
|
|
|
return values
|
|
|
|
def _create_message_dicts(
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
|
params = self._default_params
|
|
if stop is not None:
|
|
params["stop"] = stop
|
|
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
|
return message_dicts, params
|
|
|
|
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
|
|
generations = []
|
|
if not isinstance(response, dict):
|
|
response = response.dict()
|
|
for res in response["choices"]:
|
|
message = _convert_dict_to_message(res["message"])
|
|
generation_info = dict(finish_reason=res.get("finish_reason"))
|
|
generations.append(
|
|
ChatGeneration(message=message, generation_info=generation_info)
|
|
)
|
|
token_usage = response.get("usage", {})
|
|
llm_output = {
|
|
"token_usage": token_usage,
|
|
"model_name": self.model_name,
|
|
}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
"""Generate a chat response."""
|
|
should_stream = stream if stream is not None else self.streaming
|
|
if should_stream:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
if self.zhipuai_api_key is None:
|
|
raise ValueError("Did not find zhipuai_api_key.")
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
payload = {
|
|
**params,
|
|
**kwargs,
|
|
"messages": message_dicts,
|
|
"stream": False,
|
|
}
|
|
_truncate_params(payload)
|
|
headers = {
|
|
"Authorization": _get_jwt_token(self.zhipuai_api_key),
|
|
"Accept": "application/json",
|
|
}
|
|
import httpx
|
|
|
|
with httpx.Client(headers=headers, timeout=60) as client:
|
|
response = client.post(self.zhipuai_api_base, json=payload) # type: ignore[arg-type]
|
|
response.raise_for_status()
|
|
return self._create_chat_result(response.json())
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
"""Stream the chat response in chunks."""
|
|
if self.zhipuai_api_key is None:
|
|
raise ValueError("Did not find zhipuai_api_key.")
|
|
if self.zhipuai_api_base is None:
|
|
raise ValueError("Did not find zhipu_api_base.")
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
payload = {**params, **kwargs, "messages": message_dicts, "stream": True}
|
|
_truncate_params(payload)
|
|
headers = {
|
|
"Authorization": _get_jwt_token(self.zhipuai_api_key),
|
|
"Accept": "application/json",
|
|
}
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
import httpx
|
|
|
|
with httpx.Client(headers=headers, timeout=60) as client:
|
|
with connect_sse(
|
|
client, "POST", self.zhipuai_api_base, json=payload
|
|
) as event_source:
|
|
for sse in event_source.iter_sse():
|
|
chunk = json.loads(sse.data)
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
choice = chunk["choices"][0]
|
|
usage = chunk.get("usage", None)
|
|
model_name = chunk.get("model", "")
|
|
chunk = _convert_delta_to_message_chunk(
|
|
choice["delta"], default_chunk_class
|
|
)
|
|
finish_reason = choice.get("finish_reason", None)
|
|
|
|
generation_info = (
|
|
{
|
|
"finish_reason": finish_reason,
|
|
"token_usage": usage,
|
|
"model_name": model_name,
|
|
}
|
|
if finish_reason is not None
|
|
else None
|
|
)
|
|
chunk = ChatGenerationChunk(
|
|
message=chunk, generation_info=generation_info
|
|
)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
yield chunk
|
|
|
|
if finish_reason is not None:
|
|
break
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else self.streaming
|
|
if should_stream:
|
|
stream_iter = self._astream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
if self.zhipuai_api_key is None:
|
|
raise ValueError("Did not find zhipuai_api_key.")
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
payload = {
|
|
**params,
|
|
**kwargs,
|
|
"messages": message_dicts,
|
|
"stream": False,
|
|
}
|
|
_truncate_params(payload)
|
|
headers = {
|
|
"Authorization": _get_jwt_token(self.zhipuai_api_key),
|
|
"Accept": "application/json",
|
|
}
|
|
import httpx
|
|
|
|
async with httpx.AsyncClient(headers=headers, timeout=60) as client:
|
|
response = await client.post(self.zhipuai_api_base, json=payload) # type: ignore[arg-type]
|
|
response.raise_for_status()
|
|
return self._create_chat_result(response.json())
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
if self.zhipuai_api_key is None:
|
|
raise ValueError("Did not find zhipuai_api_key.")
|
|
if self.zhipuai_api_base is None:
|
|
raise ValueError("Did not find zhipu_api_base.")
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
payload = {**params, **kwargs, "messages": message_dicts, "stream": True}
|
|
_truncate_params(payload)
|
|
headers = {
|
|
"Authorization": _get_jwt_token(self.zhipuai_api_key),
|
|
"Accept": "application/json",
|
|
}
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
import httpx
|
|
|
|
async with httpx.AsyncClient(headers=headers, timeout=60) as client:
|
|
async with aconnect_sse(
|
|
client, "POST", self.zhipuai_api_base, json=payload
|
|
) as event_source:
|
|
async for sse in event_source.aiter_sse():
|
|
chunk = json.loads(sse.data)
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
choice = chunk["choices"][0]
|
|
usage = chunk.get("usage", None)
|
|
model_name = chunk.get("model", "")
|
|
chunk = _convert_delta_to_message_chunk(
|
|
choice["delta"], default_chunk_class
|
|
)
|
|
finish_reason = choice.get("finish_reason", None)
|
|
|
|
generation_info = (
|
|
{
|
|
"finish_reason": finish_reason,
|
|
"token_usage": usage,
|
|
"model_name": model_name,
|
|
}
|
|
if finish_reason is not None
|
|
else None
|
|
)
|
|
chunk = ChatGenerationChunk(
|
|
message=chunk, generation_info=generation_info
|
|
)
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
yield chunk
|
|
|
|
if finish_reason is not None:
|
|
break
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
*,
|
|
tool_choice: Optional[
|
|
Union[dict, str, Literal["auto", "any", "none"], bool]
|
|
] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind tool-like objects to this chat model.
|
|
Args:
|
|
tools: A list of tool definitions to bind to this chat model.
|
|
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
|
|
models, callables, and BaseTools will be automatically converted to
|
|
their schema dictionary representation.
|
|
tool_choice: Currently this can only be auto for this chat model.
|
|
**kwargs: Any additional parameters to pass to the
|
|
:class:`~langchain.runnable.Runnable` constructor.
|
|
"""
|
|
if self.model_name == "glm-4v":
|
|
raise ValueError("glm-4v currently does not support tool calling")
|
|
|
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
|
if tool_choice and tool_choice != "auto":
|
|
raise ValueError("ChatZhipuAI currently only supports `auto` tool choice")
|
|
elif tool_choice and tool_choice == "auto":
|
|
kwargs["tool_choice"] = tool_choice
|
|
return self.bind(tools=formatted_tools, **kwargs)
|
|
|
|
def with_structured_output(
|
|
self,
|
|
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
|
|
*,
|
|
method: Literal["function_calling", "json_mode"] = "function_calling",
|
|
include_raw: bool = False,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
|
then the model output will be an object of that class. If a dict then
|
|
the model output will be a dict. With a Pydantic class the returned
|
|
attributes will be validated, whereas with a dict they will not be. If
|
|
`method` is "function_calling" and `schema` is a dict, then the dict
|
|
must match the OpenAI function-calling spec.
|
|
method: The method for steering model generation, either "function_calling"
|
|
or "json_mode". ZhipuAI only supports "function_calling" which
|
|
converts the schema to a OpenAI function and the model will make use of the
|
|
function-calling API.
|
|
include_raw: If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
|
|
Returns:
|
|
A Runnable that takes any ChatModel input and returns as output:
|
|
|
|
If include_raw is True then a dict with keys:
|
|
raw: BaseMessage
|
|
parsed: Optional[_DictOrPydantic]
|
|
parsing_error: Optional[BaseException]
|
|
|
|
If include_raw is False then just _DictOrPydantic is returned,
|
|
where _DictOrPydantic depends on the schema:
|
|
|
|
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
|
class.
|
|
|
|
If schema is a dict then _DictOrPydantic is a dict.
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatZhipuAI
|
|
from pydantic import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = ChatZhipuAI(temperature=0)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
# -> AnswerWithJustification(
|
|
# answer='A pound of bricks and a pound of feathers weigh the same.'
|
|
# justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."
|
|
# )
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatZhipuAI
|
|
from pydantic import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = ChatZhipuAI(temperature=0)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
# -> {
|
|
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_01htjn3cspevxbqc1d7nkk8wab', 'function': {'arguments': '{"answer": "A pound of bricks and a pound of feathers weigh the same.", "justification": "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The \'pound\' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", "unit": "pounds"}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}, id='run-456beee6-65f6-4e80-88af-a6065480822c-0'),
|
|
# 'parsed': AnswerWithJustification(answer='A pound of bricks and a pound of feathers weigh the same.', justification="Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same."),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatZhipuAI
|
|
from pydantic import BaseModel
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
|
llm = ChatZhipuAI(temperature=0)
|
|
structured_llm = llm.with_structured_output(dict_schema)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
# -> {
|
|
# 'answer': 'A pound of bricks and a pound of feathers weigh the same.',
|
|
# 'justification': "Both a pound of bricks and a pound of feathers have been defined to have the same weight. The 'pound' is a unit of weight, so any two things that are described as weighing a pound will weigh the same.", 'unit': 'pounds'}
|
|
# }
|
|
|
|
""" # noqa: E501
|
|
if kwargs:
|
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
|
is_pydantic_schema = _is_pydantic_class(schema)
|
|
if method == "function_calling":
|
|
if schema is None:
|
|
raise ValueError(
|
|
"schema must be specified when method is 'function_calling'. "
|
|
"Received None."
|
|
)
|
|
tool_name = convert_to_openai_tool(schema)["function"]["name"]
|
|
llm = self.bind_tools([schema], tool_choice="auto")
|
|
if is_pydantic_schema:
|
|
output_parser: OutputParserLike = PydanticToolsParser(
|
|
tools=[schema], # type: ignore[list-item]
|
|
first_tool_only=True, # type: ignore[list-item]
|
|
)
|
|
else:
|
|
output_parser = JsonOutputKeyToolsParser(
|
|
key_name=tool_name, first_tool_only=True
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"""Unrecognized method argument. Expected 'function_calling'.
|
|
Received: '{method}'"""
|
|
)
|
|
|
|
if include_raw:
|
|
parser_assign = RunnablePassthrough.assign(
|
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
|
)
|
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
|
parser_with_fallback = parser_assign.with_fallbacks(
|
|
[parser_none], exception_key="parsing_error"
|
|
)
|
|
return RunnableMap(raw=llm) | parser_with_fallback
|
|
else:
|
|
return llm | output_parser
|