mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-04 14:48:07 +00:00
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
462 lines
15 KiB
Python
462 lines
15 KiB
Python
from __future__ import annotations
|
||
|
||
import asyncio
|
||
import functools
|
||
import logging
|
||
from typing import (
|
||
Any,
|
||
AsyncIterable,
|
||
AsyncIterator,
|
||
Callable,
|
||
Dict,
|
||
Iterable,
|
||
Iterator,
|
||
List,
|
||
Mapping,
|
||
Optional,
|
||
Tuple,
|
||
TypeVar,
|
||
)
|
||
|
||
from langchain_core.callbacks import (
|
||
AsyncCallbackManagerForLLMRun,
|
||
CallbackManagerForLLMRun,
|
||
)
|
||
from langchain_core.language_models.llms import BaseLLM
|
||
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
|
||
from langchain_core.utils import get_from_dict_or_env, pre_init
|
||
from pydantic import Field
|
||
from requests.exceptions import HTTPError
|
||
from tenacity import (
|
||
before_sleep_log,
|
||
retry,
|
||
retry_if_exception_type,
|
||
stop_after_attempt,
|
||
wait_exponential,
|
||
)
|
||
|
||
logger = logging.getLogger(__name__)
|
||
T = TypeVar("T")
|
||
|
||
|
||
def _create_retry_decorator(llm: Tongyi) -> Callable[[Any], Any]:
|
||
min_seconds = 1
|
||
max_seconds = 4
|
||
# Wait 2^x * 1 second between each retry starting with
|
||
# 4 seconds, then up to 10 seconds, then 10 seconds afterward
|
||
return retry(
|
||
reraise=True,
|
||
stop=stop_after_attempt(llm.max_retries),
|
||
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
||
retry=(retry_if_exception_type(HTTPError)),
|
||
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||
)
|
||
|
||
|
||
def check_response(resp: Any) -> Any:
|
||
"""Check the response from the completion call."""
|
||
if resp["status_code"] == 200:
|
||
return resp
|
||
elif resp["status_code"] in [400, 401]:
|
||
raise ValueError(
|
||
f"status_code: {resp['status_code']} \n "
|
||
f"code: {resp['code']} \n message: {resp['message']}"
|
||
)
|
||
else:
|
||
raise HTTPError(
|
||
f"HTTP error occurred: status_code: {resp['status_code']} \n "
|
||
f"code: {resp['code']} \n message: {resp['message']}",
|
||
response=resp,
|
||
)
|
||
|
||
|
||
def generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
|
||
"""Use tenacity to retry the completion call."""
|
||
retry_decorator = _create_retry_decorator(llm)
|
||
|
||
@retry_decorator
|
||
def _generate_with_retry(**_kwargs: Any) -> Any:
|
||
resp = llm.client.call(**_kwargs)
|
||
return check_response(resp)
|
||
|
||
return _generate_with_retry(**kwargs)
|
||
|
||
|
||
def stream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
|
||
"""Use tenacity to retry the completion call."""
|
||
retry_decorator = _create_retry_decorator(llm)
|
||
|
||
@retry_decorator
|
||
def _stream_generate_with_retry(**_kwargs: Any) -> Any:
|
||
responses = llm.client.call(**_kwargs)
|
||
for resp in responses:
|
||
yield check_response(resp)
|
||
|
||
return _stream_generate_with_retry(**kwargs)
|
||
|
||
|
||
async def astream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any:
|
||
"""Async version of `stream_generate_with_retry`.
|
||
|
||
Because the dashscope SDK doesn't provide an async API,
|
||
we wrap `stream_generate_with_retry` with an async generator."""
|
||
|
||
class _AioTongyiGenerator:
|
||
def __init__(self, _llm: Tongyi, **_kwargs: Any):
|
||
self.generator = stream_generate_with_retry(_llm, **_kwargs)
|
||
|
||
def __aiter__(self) -> AsyncIterator[Any]:
|
||
return self
|
||
|
||
async def __anext__(self) -> Any:
|
||
value = await asyncio.get_running_loop().run_in_executor(
|
||
None, self._safe_next
|
||
)
|
||
if value is not None:
|
||
return value
|
||
else:
|
||
raise StopAsyncIteration
|
||
|
||
def _safe_next(self) -> Any:
|
||
try:
|
||
return next(self.generator)
|
||
except StopIteration:
|
||
return None
|
||
|
||
async for chunk in _AioTongyiGenerator(llm, **kwargs):
|
||
yield chunk
|
||
|
||
|
||
def generate_with_last_element_mark(iterable: Iterable[T]) -> Iterator[Tuple[T, bool]]:
|
||
"""Generate elements from an iterable,
|
||
and a boolean indicating if it is the last element."""
|
||
iterator = iter(iterable)
|
||
try:
|
||
item = next(iterator)
|
||
except StopIteration:
|
||
return
|
||
for next_item in iterator:
|
||
yield item, False
|
||
item = next_item
|
||
yield item, True
|
||
|
||
|
||
async def agenerate_with_last_element_mark(
|
||
iterable: AsyncIterable[T],
|
||
) -> AsyncIterator[Tuple[T, bool]]:
|
||
"""Generate elements from an async iterable,
|
||
and a boolean indicating if it is the last element."""
|
||
iterator = iterable.__aiter__()
|
||
try:
|
||
item = await iterator.__anext__()
|
||
except StopAsyncIteration:
|
||
return
|
||
async for next_item in iterator:
|
||
yield item, False
|
||
item = next_item
|
||
yield item, True
|
||
|
||
|
||
class Tongyi(BaseLLM):
|
||
"""Tongyi completion model integration.
|
||
|
||
Setup:
|
||
Install ``dashscope`` and set environment variables ``DASHSCOPE_API_KEY``.
|
||
|
||
.. code-block:: bash
|
||
|
||
pip install dashscope
|
||
export DASHSCOPE_API_KEY="your-api-key"
|
||
|
||
Key init args — completion params:
|
||
model: str
|
||
Name of Tongyi model to use.
|
||
top_p: float
|
||
Total probability mass of tokens to consider at each step.
|
||
streaming: bool
|
||
Whether to stream the results or not.
|
||
|
||
Key init args — client params:
|
||
api_key: Optional[str]
|
||
Dashscope API KEY. If not passed in will be read from env var DASHSCOPE_API_KEY.
|
||
max_retries: int
|
||
Maximum number of retries to make when generating.
|
||
|
||
See full list of supported init args and their descriptions in the params section.
|
||
|
||
Instantiate:
|
||
.. code-block:: python
|
||
|
||
from langchain_community.llms import Tongyi
|
||
|
||
llm = Tongyi(
|
||
model="qwen-max",
|
||
# top_p="...",
|
||
# api_key="...",
|
||
# other params...
|
||
)
|
||
|
||
Invoke:
|
||
.. code-block:: python
|
||
|
||
input_text = "用50个字左右阐述,生命的意义在于"
|
||
llm.invoke(input_text)
|
||
|
||
.. code-block:: python
|
||
|
||
'探索、成长、连接与爱——在有限的时间里,不断学习、体验、贡献并寻找与世界和谐共存之道,让每一刻充满价值与意义。'
|
||
|
||
Stream:
|
||
.. code-block:: python
|
||
|
||
for chunk in llm.stream(input_text):
|
||
print(chunk)
|
||
|
||
.. code-block:: python
|
||
|
||
探索 | 、 | 成长 | 、连接与爱。 | 在有限的时间里,寻找个人价值, | 贡献于他人,共同体验世界的美好 | ,让世界因自己的存在而更 | 温暖。
|
||
|
||
Async:
|
||
.. code-block:: python
|
||
|
||
await llm.ainvoke(input_text)
|
||
|
||
# stream:
|
||
# async for chunk in llm.astream(input_text):
|
||
# print(chunk)
|
||
|
||
# batch:
|
||
# await llm.abatch([input_text])
|
||
|
||
.. code-block:: python
|
||
|
||
'探索、成长、连接与爱。在有限的时间里,寻找个人价值,贡献于他人和社会,体验丰富多彩的情感与经历,不断学习进步,让世界因自己的存在而更美好。'
|
||
|
||
""" # noqa: E501
|
||
|
||
@property
|
||
def lc_secrets(self) -> Dict[str, str]:
|
||
return {"dashscope_api_key": "DASHSCOPE_API_KEY"}
|
||
|
||
client: Any = None #: :meta private:
|
||
model_name: str = Field(default="qwen-plus", alias="model")
|
||
|
||
"""Model name to use."""
|
||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
|
||
top_p: float = 0.8
|
||
"""Total probability mass of tokens to consider at each step."""
|
||
|
||
dashscope_api_key: Optional[str] = Field(default=None, alias="api_key")
|
||
"""Dashscope api key provide by Alibaba Cloud."""
|
||
|
||
streaming: bool = False
|
||
"""Whether to stream the results or not."""
|
||
|
||
max_retries: int = 10
|
||
"""Maximum number of retries to make when generating."""
|
||
|
||
@property
|
||
def _llm_type(self) -> str:
|
||
"""Return type of llm."""
|
||
return "tongyi"
|
||
|
||
@pre_init
|
||
def validate_environment(cls, values: Dict) -> Dict:
|
||
"""Validate that api key and python package exists in environment."""
|
||
values["dashscope_api_key"] = get_from_dict_or_env(
|
||
values, ["dashscope_api_key", "api_key"], "DASHSCOPE_API_KEY"
|
||
)
|
||
try:
|
||
import dashscope
|
||
except ImportError:
|
||
raise ImportError(
|
||
"Could not import dashscope python package. "
|
||
"Please install it with `pip install dashscope`."
|
||
)
|
||
try:
|
||
values["client"] = dashscope.Generation
|
||
except AttributeError:
|
||
raise ValueError(
|
||
"`dashscope` has no `Generation` attribute, this is likely "
|
||
"due to an old version of the dashscope package. Try upgrading it "
|
||
"with `pip install --upgrade dashscope`."
|
||
)
|
||
|
||
return values
|
||
|
||
@property
|
||
def _default_params(self) -> Dict[str, Any]:
|
||
"""Get the default parameters for calling Tongyi Qwen API."""
|
||
normal_params = {
|
||
"model": self.model_name,
|
||
"top_p": self.top_p,
|
||
"api_key": self.dashscope_api_key,
|
||
}
|
||
|
||
return {**normal_params, **self.model_kwargs}
|
||
|
||
@property
|
||
def _identifying_params(self) -> Mapping[str, Any]:
|
||
return {"model_name": self.model_name, **super()._identifying_params}
|
||
|
||
def _generate(
|
||
self,
|
||
prompts: List[str],
|
||
stop: Optional[List[str]] = None,
|
||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
**kwargs: Any,
|
||
) -> LLMResult:
|
||
generations = []
|
||
if self.streaming:
|
||
if len(prompts) > 1:
|
||
raise ValueError("Cannot stream results with multiple prompts.")
|
||
generation: Optional[GenerationChunk] = None
|
||
for chunk in self._stream(prompts[0], stop, run_manager, **kwargs):
|
||
if generation is None:
|
||
generation = chunk
|
||
else:
|
||
generation += chunk
|
||
assert generation is not None
|
||
generations.append([self._chunk_to_generation(generation)])
|
||
else:
|
||
params: Dict[str, Any] = self._invocation_params(stop=stop, **kwargs)
|
||
for prompt in prompts:
|
||
completion = generate_with_retry(self, prompt=prompt, **params)
|
||
generations.append(
|
||
[Generation(**self._generation_from_qwen_resp(completion))]
|
||
)
|
||
return LLMResult(
|
||
generations=generations,
|
||
llm_output={
|
||
"model_name": self.model_name,
|
||
},
|
||
)
|
||
|
||
async def _agenerate(
|
||
self,
|
||
prompts: List[str],
|
||
stop: Optional[List[str]] = None,
|
||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
**kwargs: Any,
|
||
) -> LLMResult:
|
||
generations = []
|
||
if self.streaming:
|
||
if len(prompts) > 1:
|
||
raise ValueError("Cannot stream results with multiple prompts.")
|
||
generation: Optional[GenerationChunk] = None
|
||
async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
|
||
if generation is None:
|
||
generation = chunk
|
||
else:
|
||
generation += chunk
|
||
assert generation is not None
|
||
generations.append([self._chunk_to_generation(generation)])
|
||
else:
|
||
params: Dict[str, Any] = self._invocation_params(stop=stop, **kwargs)
|
||
for prompt in prompts:
|
||
completion = await asyncio.get_running_loop().run_in_executor(
|
||
None,
|
||
functools.partial(
|
||
generate_with_retry, **{"llm": self, "prompt": prompt, **params}
|
||
),
|
||
)
|
||
generations.append(
|
||
[Generation(**self._generation_from_qwen_resp(completion))]
|
||
)
|
||
return LLMResult(
|
||
generations=generations,
|
||
llm_output={
|
||
"model_name": self.model_name,
|
||
},
|
||
)
|
||
|
||
def _stream(
|
||
self,
|
||
prompt: str,
|
||
stop: Optional[List[str]] = None,
|
||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
**kwargs: Any,
|
||
) -> Iterator[GenerationChunk]:
|
||
params: Dict[str, Any] = self._invocation_params(
|
||
stop=stop, stream=True, **kwargs
|
||
)
|
||
for stream_resp, is_last_chunk in generate_with_last_element_mark(
|
||
stream_generate_with_retry(self, prompt=prompt, **params)
|
||
):
|
||
chunk = GenerationChunk(
|
||
**self._generation_from_qwen_resp(stream_resp, is_last_chunk)
|
||
)
|
||
if run_manager:
|
||
run_manager.on_llm_new_token(
|
||
chunk.text,
|
||
chunk=chunk,
|
||
verbose=self.verbose,
|
||
)
|
||
yield chunk
|
||
|
||
async def _astream(
|
||
self,
|
||
prompt: str,
|
||
stop: Optional[List[str]] = None,
|
||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
**kwargs: Any,
|
||
) -> AsyncIterator[GenerationChunk]:
|
||
params: Dict[str, Any] = self._invocation_params(
|
||
stop=stop, stream=True, **kwargs
|
||
)
|
||
async for stream_resp, is_last_chunk in agenerate_with_last_element_mark(
|
||
astream_generate_with_retry(self, prompt=prompt, **params)
|
||
):
|
||
chunk = GenerationChunk(
|
||
**self._generation_from_qwen_resp(stream_resp, is_last_chunk)
|
||
)
|
||
if run_manager:
|
||
await run_manager.on_llm_new_token(
|
||
chunk.text,
|
||
chunk=chunk,
|
||
verbose=self.verbose,
|
||
)
|
||
yield chunk
|
||
|
||
def _invocation_params(self, stop: Any, **kwargs: Any) -> Dict[str, Any]:
|
||
params = {
|
||
**self._default_params,
|
||
**kwargs,
|
||
}
|
||
if stop is not None:
|
||
params["stop"] = stop
|
||
if params.get("stream"):
|
||
params["incremental_output"] = True
|
||
return params
|
||
|
||
@staticmethod
|
||
def _generation_from_qwen_resp(
|
||
resp: Any, is_last_chunk: bool = True
|
||
) -> Dict[str, Any]:
|
||
# According to the response from dashscope,
|
||
# each chunk's `generation_info` overwrites the previous one.
|
||
# Besides, The `merge_dicts` method,
|
||
# which is used to concatenate `generation_info` in `GenerationChunk`,
|
||
# does not support merging of int type values.
|
||
# Therefore, we adopt the `generation_info` of the last chunk
|
||
# and discard the `generation_info` of the intermediate chunks.
|
||
if is_last_chunk:
|
||
return dict(
|
||
text=resp["output"]["text"],
|
||
generation_info=dict(
|
||
finish_reason=resp["output"]["finish_reason"],
|
||
request_id=resp["request_id"],
|
||
token_usage=dict(resp["usage"]),
|
||
),
|
||
)
|
||
else:
|
||
return dict(text=resp["output"]["text"])
|
||
|
||
@staticmethod
|
||
def _chunk_to_generation(chunk: GenerationChunk) -> Generation:
|
||
return Generation(
|
||
text=chunk.text,
|
||
generation_info=chunk.generation_info,
|
||
)
|