mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-04 22:58:42 +00:00
**Description:** - Add the `lora_request` parameter to the VLLM class to support LoRA model configurations. This enhancement allows users to specify LoRA requests directly when using VLLM, enabling more flexible and efficient model customization. **Issue:** - No existing issue for `lora_adapter` in VLLM. This PR addresses the need for configuring LoRA requests within the VLLM framework. - Reference : [Using LoRA Adapters in vLLM](https://docs.vllm.ai/en/stable/models/lora.html#using-lora-adapters) **Example Code :** Before this change, the `lora_request` parameter was not applied correctly: ```python ADAPTER_PATH = "/path/of/lora_adapter" llm = VLLM(model="Bllossom/llama-3.2-Korean-Bllossom-3B", max_new_tokens=512, top_k=2, top_p=0.90, temperature=0.1, vllm_kwargs={ "gpu_memory_utilization":0.5, "enable_lora":True, "max_model_len":1024, } ) print(llm.invoke( ["...prompt_content..."], lora_request=LoRARequest("lora_adapter", 1, ADAPTER_PATH) )) ``` **Before Change Output:** ```bash response was not applied lora_request ``` So, I attempted to apply the lora_adapter to langchain_community.llms.vllm.VLLM. **current output:** ```bash response applied lora_request ``` **Dependencies:** - None **Lint and test:** - All tests and lint checks have passed. --------- Co-authored-by: Um Changyong <changyong.um@sfa.co.kr>
190 lines
5.8 KiB
Python
190 lines
5.8 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import BaseLLM
|
|
from langchain_core.outputs import Generation, LLMResult
|
|
from langchain_core.utils import pre_init
|
|
from pydantic import Field
|
|
|
|
from langchain_community.llms.openai import BaseOpenAI
|
|
from langchain_community.utils.openai import is_openai_v1
|
|
|
|
|
|
class VLLM(BaseLLM):
|
|
"""VLLM language model."""
|
|
|
|
model: str = ""
|
|
"""The name or path of a HuggingFace Transformers model."""
|
|
|
|
tensor_parallel_size: Optional[int] = 1
|
|
"""The number of GPUs to use for distributed execution with tensor parallelism."""
|
|
|
|
trust_remote_code: Optional[bool] = False
|
|
"""Trust remote code (e.g., from HuggingFace) when downloading the model
|
|
and tokenizer."""
|
|
|
|
n: int = 1
|
|
"""Number of output sequences to return for the given prompt."""
|
|
|
|
best_of: Optional[int] = None
|
|
"""Number of output sequences that are generated from the prompt."""
|
|
|
|
presence_penalty: float = 0.0
|
|
"""Float that penalizes new tokens based on whether they appear in the
|
|
generated text so far"""
|
|
|
|
frequency_penalty: float = 0.0
|
|
"""Float that penalizes new tokens based on their frequency in the
|
|
generated text so far"""
|
|
|
|
temperature: float = 1.0
|
|
"""Float that controls the randomness of the sampling."""
|
|
|
|
top_p: float = 1.0
|
|
"""Float that controls the cumulative probability of the top tokens to consider."""
|
|
|
|
top_k: int = -1
|
|
"""Integer that controls the number of top tokens to consider."""
|
|
|
|
use_beam_search: bool = False
|
|
"""Whether to use beam search instead of sampling."""
|
|
|
|
stop: Optional[List[str]] = None
|
|
"""List of strings that stop the generation when they are generated."""
|
|
|
|
ignore_eos: bool = False
|
|
"""Whether to ignore the EOS token and continue generating tokens after
|
|
the EOS token is generated."""
|
|
|
|
max_new_tokens: int = 512
|
|
"""Maximum number of tokens to generate per output sequence."""
|
|
|
|
logprobs: Optional[int] = None
|
|
"""Number of log probabilities to return per output token."""
|
|
|
|
dtype: str = "auto"
|
|
"""The data type for the model weights and activations."""
|
|
|
|
download_dir: Optional[str] = None
|
|
"""Directory to download and load the weights. (Default to the default
|
|
cache dir of huggingface)"""
|
|
|
|
vllm_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `vllm.LLM` call not explicitly specified."""
|
|
|
|
client: Any = None #: :meta private:
|
|
|
|
@pre_init
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that python package exists in environment."""
|
|
|
|
try:
|
|
from vllm import LLM as VLLModel
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import vllm python package. "
|
|
"Please install it with `pip install vllm`."
|
|
)
|
|
|
|
values["client"] = VLLModel(
|
|
model=values["model"],
|
|
tensor_parallel_size=values["tensor_parallel_size"],
|
|
trust_remote_code=values["trust_remote_code"],
|
|
dtype=values["dtype"],
|
|
download_dir=values["download_dir"],
|
|
**values["vllm_kwargs"],
|
|
)
|
|
|
|
return values
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling vllm."""
|
|
return {
|
|
"n": self.n,
|
|
"best_of": self.best_of,
|
|
"max_tokens": self.max_new_tokens,
|
|
"top_k": self.top_k,
|
|
"top_p": self.top_p,
|
|
"temperature": self.temperature,
|
|
"presence_penalty": self.presence_penalty,
|
|
"frequency_penalty": self.frequency_penalty,
|
|
"stop": self.stop,
|
|
"ignore_eos": self.ignore_eos,
|
|
"use_beam_search": self.use_beam_search,
|
|
"logprobs": self.logprobs,
|
|
}
|
|
|
|
def _generate(
|
|
self,
|
|
prompts: List[str],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> LLMResult:
|
|
"""Run the LLM on the given prompt and input."""
|
|
from vllm import SamplingParams
|
|
|
|
lora_request = kwargs.pop("lora_request", None)
|
|
|
|
# build sampling parameters
|
|
params = {**self._default_params, **kwargs, "stop": stop}
|
|
|
|
# filter params for SamplingParams
|
|
known_keys = SamplingParams.__annotations__.keys()
|
|
sample_params = SamplingParams(
|
|
**{k: v for k, v in params.items() if k in known_keys}
|
|
)
|
|
|
|
# call the model
|
|
if lora_request:
|
|
outputs = self.client.generate(
|
|
prompts, sample_params, lora_request=lora_request
|
|
)
|
|
else:
|
|
outputs = self.client.generate(prompts, sample_params)
|
|
|
|
generations = []
|
|
for output in outputs:
|
|
text = output.outputs[0].text
|
|
generations.append([Generation(text=text)])
|
|
|
|
return LLMResult(generations=generations)
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "vllm"
|
|
|
|
|
|
class VLLMOpenAI(BaseOpenAI):
|
|
"""vLLM OpenAI-compatible API client"""
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
return False
|
|
|
|
@property
|
|
def _invocation_params(self) -> Dict[str, Any]:
|
|
"""Get the parameters used to invoke the model."""
|
|
|
|
params: Dict[str, Any] = {
|
|
"model": self.model_name,
|
|
**self._default_params,
|
|
"logit_bias": None,
|
|
}
|
|
if not is_openai_v1():
|
|
params.update(
|
|
{
|
|
"api_key": self.openai_api_key,
|
|
"api_base": self.openai_api_base,
|
|
}
|
|
)
|
|
|
|
return params
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "vllm-openai"
|