langchain/libs/partners/mistralai
2025-07-08 12:55:47 -04:00
..
langchain_mistralai mistralai[patch]: ruff fixes and rules (#31918) 2025-07-08 12:44:42 -04:00
scripts multiple: pydantic 2 compatibility, v0.3 (#26443) 2024-09-13 14:38:45 -07:00
tests mistralai[patch]: ruff fixes and rules (#31918) 2025-07-08 12:44:42 -04:00
.gitignore
LICENSE
Makefile fix: automatically fix issues with ruff (#31897) 2025-07-07 14:13:10 -04:00
pyproject.toml ruff: restore stacklevels, disable autofixing (#31919) 2025-07-08 12:55:47 -04:00
README.md
uv.lock mistralai[patch]: ruff fixes and rules (#31918) 2025-07-08 12:44:42 -04:00

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])