mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-04 12:39:32 +00:00
140 lines
3.9 KiB
Python
140 lines
3.9 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
from typing import Literal, Optional, overload
|
|
|
|
import nomic # type: ignore[import]
|
|
from langchain_core.embeddings import Embeddings
|
|
from nomic import embed
|
|
|
|
|
|
class NomicEmbeddings(Embeddings):
|
|
"""NomicEmbeddings embedding model.
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_nomic import NomicEmbeddings
|
|
|
|
model = NomicEmbeddings()
|
|
|
|
"""
|
|
|
|
@overload
|
|
def __init__(
|
|
self,
|
|
*,
|
|
model: str,
|
|
nomic_api_key: Optional[str] = ...,
|
|
dimensionality: Optional[int] = ...,
|
|
inference_mode: Literal["remote"] = ...,
|
|
): ...
|
|
|
|
@overload
|
|
def __init__(
|
|
self,
|
|
*,
|
|
model: str,
|
|
nomic_api_key: Optional[str] = ...,
|
|
dimensionality: Optional[int] = ...,
|
|
inference_mode: Literal["local", "dynamic"],
|
|
device: Optional[str] = ...,
|
|
): ...
|
|
|
|
@overload
|
|
def __init__(
|
|
self,
|
|
*,
|
|
model: str,
|
|
nomic_api_key: Optional[str] = ...,
|
|
dimensionality: Optional[int] = ...,
|
|
inference_mode: str,
|
|
device: Optional[str] = ...,
|
|
): ...
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
model: str,
|
|
nomic_api_key: Optional[str] = None,
|
|
dimensionality: Optional[int] = None,
|
|
inference_mode: str = "remote",
|
|
device: Optional[str] = None,
|
|
vision_model: Optional[str] = None,
|
|
):
|
|
"""Initialize NomicEmbeddings model.
|
|
|
|
Args:
|
|
model: model name
|
|
nomic_api_key: optionally, set the Nomic API key. Uses the ``NOMIC_API_KEY``
|
|
environment variable by default.
|
|
dimensionality: The embedding dimension, for use with Matryoshka-capable
|
|
models. Defaults to full-size.
|
|
inference_mode: How to generate embeddings. One of ``'remote'``, ``'local'``
|
|
(Embed4All), or ``'dynamic'`` (automatic). Defaults to ``'remote'``.
|
|
device: The device to use for local embeddings. Choices include
|
|
``'cpu'``, ``'gpu'``, ``'nvidia'``, ``'amd'``, or a specific device
|
|
name. See the docstring for ``GPT4All.__init__`` for more info.
|
|
Typically defaults to ``'cpu'``. Do not use on macOS.
|
|
vision_model: The vision model to use for image embeddings.
|
|
|
|
"""
|
|
_api_key = nomic_api_key or os.environ.get("NOMIC_API_KEY")
|
|
if _api_key:
|
|
nomic.login(_api_key)
|
|
self.model = model
|
|
self.dimensionality = dimensionality
|
|
self.inference_mode = inference_mode
|
|
self.device = device
|
|
self.vision_model = vision_model
|
|
|
|
def embed(self, texts: list[str], *, task_type: str) -> list[list[float]]:
|
|
"""Embed texts.
|
|
|
|
Args:
|
|
texts: list of texts to embed
|
|
task_type: the task type to use when embedding. One of ``'search_query'``,
|
|
``'search_document'``, ``'classification'``, ``'clustering'``
|
|
|
|
"""
|
|
output = embed.text(
|
|
texts=texts,
|
|
model=self.model,
|
|
task_type=task_type,
|
|
dimensionality=self.dimensionality,
|
|
inference_mode=self.inference_mode,
|
|
device=self.device,
|
|
)
|
|
return output["embeddings"]
|
|
|
|
def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
|
"""Embed search docs.
|
|
|
|
Args:
|
|
texts: list of texts to embed as documents
|
|
|
|
"""
|
|
return self.embed(
|
|
texts=texts,
|
|
task_type="search_document",
|
|
)
|
|
|
|
def embed_query(self, text: str) -> list[float]:
|
|
"""Embed query text.
|
|
|
|
Args:
|
|
text: query text
|
|
|
|
"""
|
|
return self.embed(
|
|
texts=[text],
|
|
task_type="search_query",
|
|
)[0]
|
|
|
|
def embed_image(self, uris: list[str]) -> list[list[float]]:
|
|
return embed.image(
|
|
images=uris,
|
|
model=self.vision_model,
|
|
)["embeddings"]
|