mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-21 14:18:52 +00:00
- [x] **PR message**: - **Description:** Fixes warning messages raised due to missing `protected_namespaces` parameter in `ConfigDict`. - **Issue:** https://github.com/langchain-ai/langchain/issues/27609 - **Dependencies:** No dependencies - **Twitter handle:** @gawbul
93 lines
2.7 KiB
Python
93 lines
2.7 KiB
Python
"""Wrapper around Bookend AI embedding models."""
|
|
|
|
import json
|
|
from typing import Any, List
|
|
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from pydantic import BaseModel, ConfigDict, Field
|
|
|
|
API_URL = "https://api.bookend.ai/"
|
|
DEFAULT_TASK = "embeddings"
|
|
PATH = "/models/predict"
|
|
|
|
|
|
class BookendEmbeddings(BaseModel, Embeddings):
|
|
"""Bookend AI sentence_transformers embedding models.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import BookendEmbeddings
|
|
|
|
bookend = BookendEmbeddings(
|
|
domain={domain}
|
|
api_token={api_token}
|
|
model_id={model_id}
|
|
)
|
|
bookend.embed_documents([
|
|
"Please put on these earmuffs because I can't you hear.",
|
|
"Baby wipes are made of chocolate stardust.",
|
|
])
|
|
bookend.embed_query(
|
|
"She only paints with bold colors; she does not like pastels."
|
|
)
|
|
"""
|
|
|
|
domain: str
|
|
"""Request for a domain at https://bookend.ai/ to use this embeddings module."""
|
|
api_token: str
|
|
"""Request for an API token at https://bookend.ai/ to use this embeddings module."""
|
|
model_id: str
|
|
"""Embeddings model ID to use."""
|
|
auth_header: dict = Field(default_factory=dict)
|
|
|
|
model_config = ConfigDict(protected_namespaces=())
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
super().__init__(**kwargs)
|
|
self.auth_header = {"Authorization": "Basic {}".format(self.api_token)}
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Embed documents using a Bookend deployed embeddings model.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
result = []
|
|
headers = self.auth_header
|
|
headers["Content-Type"] = "application/json; charset=utf-8"
|
|
params = {
|
|
"model_id": self.model_id,
|
|
"task": DEFAULT_TASK,
|
|
}
|
|
|
|
for text in texts:
|
|
data = json.dumps(
|
|
{"text": text, "question": None, "context": None, "instruction": None}
|
|
)
|
|
r = requests.request(
|
|
"POST",
|
|
API_URL + self.domain + PATH,
|
|
headers=headers,
|
|
params=params,
|
|
data=data,
|
|
)
|
|
result.append(r.json()[0]["data"])
|
|
|
|
return result
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Embed a query using a Bookend deployed embeddings model.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
return self.embed_documents([text])[0]
|