mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-22 06:39:52 +00:00
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
316 lines
10 KiB
Python
316 lines
10 KiB
Python
from __future__ import annotations
|
||
|
||
import logging
|
||
from typing import (
|
||
Any,
|
||
AsyncIterator,
|
||
Dict,
|
||
Iterator,
|
||
List,
|
||
Optional,
|
||
)
|
||
|
||
from langchain_core.callbacks import (
|
||
AsyncCallbackManagerForLLMRun,
|
||
CallbackManagerForLLMRun,
|
||
)
|
||
from langchain_core.language_models.llms import LLM
|
||
from langchain_core.outputs import GenerationChunk
|
||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
|
||
from pydantic import Field, SecretStr
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
class QianfanLLMEndpoint(LLM):
|
||
"""Baidu Qianfan completion model integration.
|
||
|
||
Setup:
|
||
Install ``qianfan`` and set environment variables ``QIANFAN_AK``, ``QIANFAN_SK``.
|
||
|
||
.. code-block:: bash
|
||
|
||
pip install qianfan
|
||
export QIANFAN_AK="your-api-key"
|
||
export QIANFAN_SK="your-secret_key"
|
||
|
||
Key init args — completion params:
|
||
model: str
|
||
Name of Qianfan model to use.
|
||
temperature: Optional[float]
|
||
Sampling temperature.
|
||
endpoint: Optional[str]
|
||
Endpoint of the Qianfan LLM
|
||
top_p: Optional[float]
|
||
What probability mass to use.
|
||
|
||
Key init args — client params:
|
||
timeout: Optional[int]
|
||
Timeout for requests.
|
||
api_key: Optional[str]
|
||
Qianfan API KEY. If not passed in will be read from env var QIANFAN_AK.
|
||
secret_key: Optional[str]
|
||
Qianfan SECRET KEY. If not passed in will be read from env var QIANFAN_SK.
|
||
|
||
See full list of supported init args and their descriptions in the params section.
|
||
|
||
Instantiate:
|
||
.. code-block:: python
|
||
|
||
from langchain_community.llms import QianfanLLMEndpoint
|
||
|
||
llm = QianfanLLMEndpoint(
|
||
model="ERNIE-3.5-8K",
|
||
# api_key="...",
|
||
# secret_key="...",
|
||
# other params...
|
||
)
|
||
|
||
Invoke:
|
||
.. code-block:: python
|
||
|
||
input_text = "用50个字左右阐述,生命的意义在于"
|
||
llm.invoke(input_text)
|
||
|
||
.. code-block:: python
|
||
|
||
'生命的意义在于体验、成长、爱与被爱、贡献与传承,以及对未知的勇敢探索与自我超越。'
|
||
|
||
Stream:
|
||
.. code-block:: python
|
||
|
||
for chunk in llm.stream(input_text):
|
||
print(chunk)
|
||
|
||
.. code-block:: python
|
||
|
||
生命的意义 | 在于不断探索 | 与成长 | ,实现 | 自我价值,| 给予爱 | 并接受 | 爱, | 在经历 | 中感悟 | ,让 | 短暂的存在 | 绽放出无限 | 的光彩 | 与温暖 | 。
|
||
|
||
.. code-block:: python
|
||
|
||
stream = llm.stream(input_text)
|
||
full = next(stream)
|
||
for chunk in stream:
|
||
full += chunk
|
||
full
|
||
|
||
.. code-block::
|
||
|
||
'生命的意义在于探索、成长、爱与被爱、贡献价值、体验世界之美,以及在有限的时间里追求内心的平和与幸福。'
|
||
|
||
Async:
|
||
.. code-block:: python
|
||
|
||
await llm.ainvoke(input_text)
|
||
|
||
# stream:
|
||
# async for chunk in llm.astream(input_text):
|
||
# print(chunk)
|
||
|
||
# batch:
|
||
# await llm.abatch([input_text])
|
||
|
||
.. code-block:: python
|
||
|
||
'生命的意义在于探索、成长、爱与被爱、贡献社会,在有限的时间里追寻无限的可能,实现自我价值,让生活充满色彩与意义。'
|
||
|
||
""" # noqa: E501
|
||
|
||
init_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
"""init kwargs for qianfan client init, such as `query_per_second` which is
|
||
associated with qianfan resource object to limit QPS"""
|
||
|
||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
"""extra params for model invoke using with `do`."""
|
||
|
||
client: Any = None
|
||
|
||
qianfan_ak: Optional[SecretStr] = Field(default=None, alias="api_key")
|
||
qianfan_sk: Optional[SecretStr] = Field(default=None, alias="secret_key")
|
||
|
||
streaming: Optional[bool] = False
|
||
"""Whether to stream the results or not."""
|
||
|
||
model: Optional[str] = Field(default=None)
|
||
"""Model name.
|
||
you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
|
||
|
||
preset models are mapping to an endpoint.
|
||
`model` will be ignored if `endpoint` is set
|
||
|
||
Default is set by `qianfan` SDK, not here
|
||
"""
|
||
|
||
endpoint: Optional[str] = None
|
||
"""Endpoint of the Qianfan LLM, required if custom model used."""
|
||
|
||
request_timeout: Optional[int] = Field(default=60, alias="timeout")
|
||
"""request timeout for chat http requests"""
|
||
|
||
top_p: Optional[float] = 0.8
|
||
temperature: Optional[float] = 0.95
|
||
penalty_score: Optional[float] = 1
|
||
"""Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo.
|
||
In the case of other model, passing these params will not affect the result.
|
||
"""
|
||
|
||
@pre_init
|
||
def validate_environment(cls, values: Dict) -> Dict:
|
||
values["qianfan_ak"] = convert_to_secret_str(
|
||
get_from_dict_or_env(
|
||
values,
|
||
["qianfan_ak", "api_key"],
|
||
"QIANFAN_AK",
|
||
default="",
|
||
)
|
||
)
|
||
values["qianfan_sk"] = convert_to_secret_str(
|
||
get_from_dict_or_env(
|
||
values,
|
||
["qianfan_sk", "secret_key"],
|
||
"QIANFAN_SK",
|
||
default="",
|
||
)
|
||
)
|
||
|
||
params = {
|
||
**values.get("init_kwargs", {}),
|
||
"model": values["model"],
|
||
}
|
||
if values["qianfan_ak"].get_secret_value() != "":
|
||
params["ak"] = values["qianfan_ak"].get_secret_value()
|
||
if values["qianfan_sk"].get_secret_value() != "":
|
||
params["sk"] = values["qianfan_sk"].get_secret_value()
|
||
if values["endpoint"] is not None and values["endpoint"] != "":
|
||
params["endpoint"] = values["endpoint"]
|
||
try:
|
||
import qianfan
|
||
|
||
values["client"] = qianfan.Completion(**params)
|
||
except ImportError:
|
||
raise ImportError(
|
||
"qianfan package not found, please install it with "
|
||
"`pip install qianfan`"
|
||
)
|
||
return values
|
||
|
||
@property
|
||
def _identifying_params(self) -> Dict[str, Any]:
|
||
return {
|
||
**{"endpoint": self.endpoint, "model": self.model},
|
||
**super()._identifying_params,
|
||
}
|
||
|
||
@property
|
||
def _llm_type(self) -> str:
|
||
"""Return type of llm."""
|
||
return "baidu-qianfan-endpoint"
|
||
|
||
@property
|
||
def _default_params(self) -> Dict[str, Any]:
|
||
"""Get the default parameters for calling Qianfan API."""
|
||
normal_params = {
|
||
"model": self.model,
|
||
"endpoint": self.endpoint,
|
||
"stream": self.streaming,
|
||
"request_timeout": self.request_timeout,
|
||
"top_p": self.top_p,
|
||
"temperature": self.temperature,
|
||
"penalty_score": self.penalty_score,
|
||
}
|
||
|
||
return {**normal_params, **self.model_kwargs}
|
||
|
||
def _convert_prompt_msg_params(
|
||
self,
|
||
prompt: str,
|
||
**kwargs: Any,
|
||
) -> dict:
|
||
if "streaming" in kwargs:
|
||
kwargs["stream"] = kwargs.pop("streaming")
|
||
return {
|
||
**{"prompt": prompt, "model": self.model},
|
||
**self._default_params,
|
||
**kwargs,
|
||
}
|
||
|
||
def _call(
|
||
self,
|
||
prompt: str,
|
||
stop: Optional[List[str]] = None,
|
||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
**kwargs: Any,
|
||
) -> str:
|
||
"""Call out to an qianfan models endpoint for each generation with a prompt.
|
||
Args:
|
||
prompt: The prompt to pass into the model.
|
||
stop: Optional list of stop words to use when generating.
|
||
Returns:
|
||
The string generated by the model.
|
||
|
||
Example:
|
||
.. code-block:: python
|
||
response = qianfan_model.invoke("Tell me a joke.")
|
||
"""
|
||
if self.streaming:
|
||
completion = ""
|
||
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
|
||
completion += chunk.text
|
||
return completion
|
||
params = self._convert_prompt_msg_params(prompt, **kwargs)
|
||
params["stop"] = stop
|
||
response_payload = self.client.do(**params)
|
||
|
||
return response_payload["result"]
|
||
|
||
async def _acall(
|
||
self,
|
||
prompt: str,
|
||
stop: Optional[List[str]] = None,
|
||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
**kwargs: Any,
|
||
) -> str:
|
||
if self.streaming:
|
||
completion = ""
|
||
async for chunk in self._astream(prompt, stop, run_manager, **kwargs):
|
||
completion += chunk.text
|
||
return completion
|
||
|
||
params = self._convert_prompt_msg_params(prompt, **kwargs)
|
||
params["stop"] = stop
|
||
response_payload = await self.client.ado(**params)
|
||
|
||
return response_payload["result"]
|
||
|
||
def _stream(
|
||
self,
|
||
prompt: str,
|
||
stop: Optional[List[str]] = None,
|
||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
**kwargs: Any,
|
||
) -> Iterator[GenerationChunk]:
|
||
params = self._convert_prompt_msg_params(prompt, **{**kwargs, "stream": True})
|
||
params["stop"] = stop
|
||
for res in self.client.do(**params):
|
||
if res:
|
||
chunk = GenerationChunk(text=res["result"])
|
||
if run_manager:
|
||
run_manager.on_llm_new_token(chunk.text)
|
||
yield chunk
|
||
|
||
async def _astream(
|
||
self,
|
||
prompt: str,
|
||
stop: Optional[List[str]] = None,
|
||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
**kwargs: Any,
|
||
) -> AsyncIterator[GenerationChunk]:
|
||
params = self._convert_prompt_msg_params(prompt, **{**kwargs, "stream": True})
|
||
params["stop"] = stop
|
||
async for res in await self.client.ado(**params):
|
||
if res:
|
||
chunk = GenerationChunk(text=res["result"])
|
||
if run_manager:
|
||
await run_manager.on_llm_new_token(chunk.text)
|
||
yield chunk
|