langchain/libs/standard-tests/langchain_standard_tests/unit_tests/embeddings.py
Erick Friis c2a3021bb0
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00

50 lines
1.5 KiB
Python

import os
from abc import abstractmethod
from typing import Tuple, Type
from unittest import mock
import pytest
from langchain_core.embeddings import Embeddings
from pydantic import SecretStr
from langchain_standard_tests.base import BaseStandardTests
class EmbeddingsTests(BaseStandardTests):
@property
@abstractmethod
def embeddings_class(self) -> Type[Embeddings]:
...
@property
def embedding_model_params(self) -> dict:
return {}
@pytest.fixture
def model(self) -> Embeddings:
return self.embeddings_class(**self.embedding_model_params)
class EmbeddingsUnitTests(EmbeddingsTests):
def test_init(self) -> None:
model = self.embeddings_class(**self.embedding_model_params)
assert model is not None
@property
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
"""Return env vars, init args, and expected instance attrs for initializing
from env vars."""
return {}, {}, {}
def test_init_from_env(self) -> None:
env_params, embeddings_params, expected_attrs = self.init_from_env_params
if env_params:
with mock.patch.dict(os.environ, env_params):
model = self.embeddings_class(**embeddings_params)
assert model is not None
for k, expected in expected_attrs.items():
actual = getattr(model, k)
if isinstance(actual, SecretStr):
actual = actual.get_secret_value()
assert actual == expected