langchain/libs/partners/groq/tests/integration_tests/test_chat_models.py
Mason Daugherty 376f70be96
sync wip with master (#32436)
Co-authored-by: Kanav Bansal <13186335+bansalkanav@users.noreply.github.com>
Co-authored-by: Pranav Bhartiya <124018094+pranauww@users.noreply.github.com>
Co-authored-by: Nelson Sproul <nelson.sproul@gmail.com>
Co-authored-by: John Bledsoe <jmbledsoe@gmail.com>
2025-08-06 17:57:05 -04:00

671 lines
23 KiB
Python

"""Test ChatGroq chat model."""
from __future__ import annotations
import json
from typing import Any, Optional, cast
import pytest
from groq import BadRequestError
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import ChatGeneration, LLMResult
from pydantic import BaseModel, Field
from langchain_groq import ChatGroq
from tests.unit_tests.fake.callbacks import (
FakeCallbackHandler,
FakeCallbackHandlerWithChatStart,
)
DEFAULT_MODEL_NAME = "openai/gpt-oss-20b"
# gpt-oss doesn't support `reasoning_effort`
REASONING_MODEL_NAME = "deepseek-r1-distill-llama-70b"
#
# Smoke test Runnable interface
#
@pytest.mark.scheduled
def test_invoke() -> None:
"""Test Chat wrapper."""
chat = ChatGroq(
model=DEFAULT_MODEL_NAME,
temperature=0.7,
base_url=None,
groq_proxy=None,
timeout=10.0,
max_retries=3,
http_client=None,
n=1,
max_tokens=10,
default_headers=None,
default_query=None,
)
message = HumanMessage(content="Welcome to the Groqetship")
response = chat.invoke([message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
@pytest.mark.scheduled
async def test_ainvoke() -> None:
"""Test ainvoke tokens from ChatGroq."""
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
result = await chat.ainvoke("Welcome to the Groqetship!", config={"tags": ["foo"]})
assert isinstance(result, BaseMessage)
assert isinstance(result.content, str)
@pytest.mark.scheduled
def test_batch() -> None:
"""Test batch tokens from ChatGroq."""
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
result = chat.batch(["Hello!", "Welcome to the Groqetship!"])
for token in result:
assert isinstance(token, BaseMessage)
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_abatch() -> None:
"""Test abatch tokens from ChatGroq."""
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
result = await chat.abatch(["Hello!", "Welcome to the Groqetship!"])
for token in result:
assert isinstance(token, BaseMessage)
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_stream() -> None:
"""Test streaming tokens from Groq."""
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
for token in chat.stream("Welcome to the Groqetship!"):
assert isinstance(token, BaseMessageChunk)
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_astream() -> None:
"""Test streaming tokens from Groq."""
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
full: Optional[BaseMessageChunk] = None
chunks_with_token_counts = 0
chunks_with_response_metadata = 0
async for token in chat.astream("Welcome to the Groqetship!"):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
full = token if full is None else full + token
if token.usage_metadata is not None:
chunks_with_token_counts += 1
if token.response_metadata:
chunks_with_response_metadata += 1
if chunks_with_token_counts != 1 or chunks_with_response_metadata != 1:
msg = (
"Expected exactly one chunk with token counts or metadata. "
"AIMessageChunk aggregation adds / appends these metadata. Check that "
"this is behaving properly."
)
raise AssertionError(msg)
assert isinstance(full, AIMessageChunk)
assert full.usage_metadata is not None
assert full.usage_metadata["input_tokens"] > 0
assert full.usage_metadata["output_tokens"] > 0
assert (
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
== full.usage_metadata["total_tokens"]
)
for expected_metadata in ["model_name", "system_fingerprint"]:
assert full.response_metadata[expected_metadata]
#
# Test Legacy generate methods
#
@pytest.mark.scheduled
def test_generate() -> None:
"""Test sync generate."""
n = 1
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
message = HumanMessage(content="Hello", n=1)
response = chat.generate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
assert response.llm_output["model_name"] == chat.model_name
for generations in response.generations:
assert len(generations) == n
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_agenerate() -> None:
"""Test async generation."""
n = 1
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10, n=1)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
assert response.llm_output["model_name"] == chat.model_name
for generations in response.generations:
assert len(generations) == n
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
#
# Test streaming flags in invoke and generate
#
@pytest.mark.scheduled
def test_invoke_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
chat = ChatGroq(
model=DEFAULT_MODEL_NAME,
max_tokens=2,
streaming=True,
temperature=0,
callbacks=[callback_handler],
)
message = HumanMessage(content="Welcome to the Groqetship")
response = chat.invoke([message])
assert callback_handler.llm_streams > 0
assert isinstance(response, BaseMessage)
@pytest.mark.scheduled
async def test_agenerate_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandlerWithChatStart()
chat = ChatGroq(
model=DEFAULT_MODEL_NAME,
max_tokens=10,
streaming=True,
temperature=0,
callbacks=[callback_handler],
)
message = HumanMessage(content="Welcome to the Groqetship")
response = await chat.agenerate([[message], [message]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output is not None
assert response.llm_output["model_name"] == chat.model_name
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
#
# Test reasoning output
#
def test_reasoning_output_invoke() -> None:
"""Test reasoning output from ChatGroq with invoke."""
chat = ChatGroq(
model=REASONING_MODEL_NAME,
reasoning_format="parsed",
)
message = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(content="I love programming."),
]
response = chat.invoke(message)
assert isinstance(response, AIMessage)
assert "reasoning_content" in response.additional_kwargs
assert isinstance(response.additional_kwargs["reasoning_content"], str)
assert len(response.additional_kwargs["reasoning_content"]) > 0
def test_reasoning_output_stream() -> None:
"""Test reasoning output from ChatGroq with stream."""
chat = ChatGroq(
model=REASONING_MODEL_NAME,
reasoning_format="parsed",
)
message = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(content="I love programming."),
]
full_response: Optional[AIMessageChunk] = None
for token in chat.stream(message):
assert isinstance(token, AIMessageChunk)
if full_response is None:
full_response = token
else:
# Casting since adding results in a type error
full_response = cast(AIMessageChunk, full_response + token)
assert full_response is not None
assert isinstance(full_response, AIMessageChunk)
assert "reasoning_content" in full_response.additional_kwargs
assert isinstance(full_response.additional_kwargs["reasoning_content"], str)
assert len(full_response.additional_kwargs["reasoning_content"]) > 0
def test_reasoning_effort_none() -> None:
"""Test that no reasoning output is returned if effort is set to none."""
chat = ChatGroq(
model="qwen/qwen3-32b", # Only qwen3 currently supports reasoning_effort = none
reasoning_effort="none",
)
message = HumanMessage(content="What is the capital of France?")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert "reasoning_content" not in response.additional_kwargs
assert "<think>" not in response.content and "<think/>" not in response.content
@pytest.mark.parametrize("effort", ["low", "medium", "high"])
def test_reasoning_effort_levels(effort: str) -> None:
"""Test reasoning effort options for different levels."""
# As of now, only the new gpt-oss models support `'low'`, `'medium'`, and `'high'`
chat = ChatGroq(
model=DEFAULT_MODEL_NAME,
reasoning_effort=effort,
)
message = HumanMessage(content="What is the capital of France?")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
assert len(response.content) > 0
assert response.response_metadata.get("reasoning_effort") == effort
@pytest.mark.parametrize("effort", ["low", "medium", "high"])
def test_reasoning_effort_invoke_override(effort: str) -> None:
"""Test that reasoning_effort in invoke() overrides class-level setting."""
# Create chat with no reasoning effort at class level
chat = ChatGroq(
model=DEFAULT_MODEL_NAME,
)
message = HumanMessage(content="What is the capital of France?")
# Override reasoning_effort in invoke()
response = chat.invoke([message], reasoning_effort=effort)
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
assert len(response.content) > 0
assert response.response_metadata.get("reasoning_effort") == effort
def test_reasoning_effort_invoke_override_different_level() -> None:
"""Test that reasoning_effort in invoke() overrides class-level setting."""
# Create chat with reasoning effort at class level
chat = ChatGroq(
model=DEFAULT_MODEL_NAME, # openai/gpt-oss-20b supports reasoning_effort
reasoning_effort="high",
)
message = HumanMessage(content="What is the capital of France?")
# Override reasoning_effort to 'low' in invoke()
response = chat.invoke([message], reasoning_effort="low")
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
assert len(response.content) > 0
# Should reflect the overridden value, not the class-level setting
assert response.response_metadata.get("reasoning_effort") == "low"
def test_reasoning_effort_streaming() -> None:
"""Test that reasoning_effort is captured in streaming response metadata."""
chat = ChatGroq(
model=DEFAULT_MODEL_NAME,
reasoning_effort="medium",
)
message = HumanMessage(content="What is the capital of France?")
chunks = list(chat.stream([message]))
assert len(chunks) > 0
# Find the final chunk with finish_reason
final_chunk = None
for chunk in chunks:
if chunk.response_metadata.get("finish_reason"):
final_chunk = chunk
break
assert final_chunk is not None
assert final_chunk.response_metadata.get("reasoning_effort") == "medium"
#
# Misc tests
#
def test_streaming_generation_info() -> None:
"""Test that generation info is preserved when streaming."""
class _FakeCallback(FakeCallbackHandler):
saved_things: dict = {}
def on_llm_end(
self,
*args: Any,
**kwargs: Any,
) -> Any:
# Save the generation
self.saved_things["generation"] = args[0]
callback = _FakeCallback()
chat = ChatGroq(
model="llama-3.1-8b-instant", # Use a model that properly streams content
max_tokens=2,
temperature=0,
callbacks=[callback],
)
list(chat.stream("Respond with the single word Hello", stop=["o"]))
generation = callback.saved_things["generation"]
# `Hello!` is two tokens, assert that that is what is returned
assert isinstance(generation, LLMResult)
assert generation.generations[0][0].text == "Hell"
def test_system_message() -> None:
"""Test ChatGroq wrapper with system message."""
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
system_message = SystemMessage(content="You are to chat with the user.")
human_message = HumanMessage(content="Hello")
response = chat.invoke([system_message, human_message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_tool_choice() -> None:
"""Test that tool choice is respected."""
llm = ChatGroq(model=DEFAULT_MODEL_NAME)
class MyTool(BaseModel):
name: str
age: int
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
resp = with_tool.invoke("Who was the 27 year old named Erick? Use the tool.")
assert isinstance(resp, AIMessage)
assert resp.content == "" # should just be tool call
tool_calls = resp.additional_kwargs["tool_calls"]
assert len(tool_calls) == 1
tool_call = tool_calls[0]
assert tool_call["function"]["name"] == "MyTool"
assert json.loads(tool_call["function"]["arguments"]) == {
"age": 27,
"name": "Erick",
}
assert tool_call["type"] == "function"
assert isinstance(resp.tool_calls, list)
assert len(resp.tool_calls) == 1
tool_call = resp.tool_calls[0]
assert tool_call["name"] == "MyTool"
assert tool_call["args"] == {"name": "Erick", "age": 27}
def test_tool_choice_bool() -> None:
"""Test that tool choice is respected just passing in True."""
llm = ChatGroq(model=DEFAULT_MODEL_NAME)
class MyTool(BaseModel):
name: str
age: int
with_tool = llm.bind_tools([MyTool], tool_choice=True)
resp = with_tool.invoke("Who was the 27 year old named Erick? Use the tool.")
assert isinstance(resp, AIMessage)
assert resp.content == "" # should just be tool call
tool_calls = resp.additional_kwargs["tool_calls"]
assert len(tool_calls) == 1
tool_call = tool_calls[0]
assert tool_call["function"]["name"] == "MyTool"
assert json.loads(tool_call["function"]["arguments"]) == {
"age": 27,
"name": "Erick",
}
assert tool_call["type"] == "function"
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
def test_streaming_tool_call() -> None:
"""Test that tool choice is respected."""
llm = ChatGroq(model=DEFAULT_MODEL_NAME)
class MyTool(BaseModel):
name: str
age: int
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
resp = with_tool.stream("Who was the 27 year old named Erick?")
additional_kwargs = None
for chunk in resp:
assert isinstance(chunk, AIMessageChunk)
assert chunk.content == "" # should just be tool call
additional_kwargs = chunk.additional_kwargs
assert additional_kwargs is not None
tool_calls = additional_kwargs["tool_calls"]
assert len(tool_calls) == 1
tool_call = tool_calls[0]
assert tool_call["function"]["name"] == "MyTool"
assert json.loads(tool_call["function"]["arguments"]) == {
"age": 27,
"name": "Erick",
}
assert tool_call["type"] == "function"
assert isinstance(chunk, AIMessageChunk)
assert isinstance(chunk.tool_call_chunks, list)
assert len(chunk.tool_call_chunks) == 1
tool_call_chunk = chunk.tool_call_chunks[0]
assert tool_call_chunk["name"] == "MyTool"
assert isinstance(tool_call_chunk["args"], str)
assert json.loads(tool_call_chunk["args"]) == {"name": "Erick", "age": 27}
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
async def test_astreaming_tool_call() -> None:
"""Test that tool choice is respected."""
llm = ChatGroq(model=DEFAULT_MODEL_NAME)
class MyTool(BaseModel):
name: str
age: int
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
resp = with_tool.astream("Who was the 27 year old named Erick?")
additional_kwargs = None
async for chunk in resp:
assert isinstance(chunk, AIMessageChunk)
assert chunk.content == "" # should just be tool call
additional_kwargs = chunk.additional_kwargs
assert additional_kwargs is not None
tool_calls = additional_kwargs["tool_calls"]
assert len(tool_calls) == 1
tool_call = tool_calls[0]
assert tool_call["function"]["name"] == "MyTool"
assert json.loads(tool_call["function"]["arguments"]) == {
"age": 27,
"name": "Erick",
}
assert tool_call["type"] == "function"
assert isinstance(chunk, AIMessageChunk)
assert isinstance(chunk.tool_call_chunks, list)
assert len(chunk.tool_call_chunks) == 1
tool_call_chunk = chunk.tool_call_chunks[0]
assert tool_call_chunk["name"] == "MyTool"
assert isinstance(tool_call_chunk["args"], str)
assert json.loads(tool_call_chunk["args"]) == {"name": "Erick", "age": 27}
@pytest.mark.scheduled
def test_json_mode_structured_output() -> None:
"""Test with_structured_output with json."""
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
chat = ChatGroq(model=DEFAULT_MODEL_NAME).with_structured_output(
Joke, method="json_mode"
)
result = chat.invoke(
"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys"
)
assert type(result) is Joke
assert len(result.setup) != 0
assert len(result.punchline) != 0
def test_setting_service_tier_class() -> None:
"""Test setting service tier defined at ChatGroq level."""
message = HumanMessage(content="Welcome to the Groqetship")
# Initialization
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="auto")
assert chat.service_tier == "auto"
response = chat.invoke([message])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
assert response.response_metadata.get("service_tier") == "auto"
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="flex")
assert chat.service_tier == "flex"
response = chat.invoke([message])
assert response.response_metadata.get("service_tier") == "flex"
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="on_demand")
assert chat.service_tier == "on_demand"
response = chat.invoke([message])
assert response.response_metadata.get("service_tier") == "on_demand"
chat = ChatGroq(model=DEFAULT_MODEL_NAME)
assert chat.service_tier == "on_demand"
response = chat.invoke([message])
assert response.response_metadata.get("service_tier") == "on_demand"
with pytest.raises(ValueError):
ChatGroq(model=DEFAULT_MODEL_NAME, service_tier=None) # type: ignore[arg-type]
with pytest.raises(ValueError):
ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="invalid") # type: ignore[arg-type]
def test_setting_service_tier_request() -> None:
"""Test setting service tier defined at request level."""
message = HumanMessage(content="Welcome to the Groqetship")
chat = ChatGroq(model=DEFAULT_MODEL_NAME)
response = chat.invoke(
[message],
service_tier="auto",
)
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
assert response.response_metadata.get("service_tier") == "auto"
response = chat.invoke(
[message],
service_tier="flex",
)
assert response.response_metadata.get("service_tier") == "flex"
response = chat.invoke(
[message],
service_tier="on_demand",
)
assert response.response_metadata.get("service_tier") == "on_demand"
assert chat.service_tier == "on_demand"
response = chat.invoke(
[message],
)
assert response.response_metadata.get("service_tier") == "on_demand"
# If an `invoke` call is made with no service tier, we fall back to the class level
# setting
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="auto")
response = chat.invoke(
[message],
)
assert response.response_metadata.get("service_tier") == "auto"
response = chat.invoke(
[message],
service_tier="on_demand",
)
assert response.response_metadata.get("service_tier") == "on_demand"
with pytest.raises(BadRequestError):
response = chat.invoke(
[message],
service_tier="invalid",
)
response = chat.invoke(
[message],
service_tier=None,
)
assert response.response_metadata.get("service_tier") == "auto"
def test_setting_service_tier_streaming() -> None:
"""Test service tier settings for streaming calls."""
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="flex")
chunks = list(chat.stream("Why is the sky blue?", service_tier="auto"))
assert chunks[-1].response_metadata.get("service_tier") == "auto"
async def test_setting_service_tier_request_async() -> None:
"""Test async setting of service tier at the request level."""
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="flex")
response = await chat.ainvoke("Hello!", service_tier="on_demand")
assert response.response_metadata.get("service_tier") == "on_demand"
# Groq does not currently support N > 1
# @pytest.mark.scheduled
# def test_chat_multiple_completions() -> None:
# """Test ChatGroq wrapper with multiple completions."""
# chat = ChatGroq(max_tokens=10, n=5)
# message = HumanMessage(content="Hello")
# response = chat._generate([message])
# assert isinstance(response, ChatResult)
# assert len(response.generations) == 5
# for generation in response.generations:
# assert isinstance(generation.message, BaseMessage)
# assert isinstance(generation.message.content, str)