mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-21 02:17:12 +00:00
Co-authored-by: Kanav Bansal <13186335+bansalkanav@users.noreply.github.com> Co-authored-by: Pranav Bhartiya <124018094+pranauww@users.noreply.github.com> Co-authored-by: Nelson Sproul <nelson.sproul@gmail.com> Co-authored-by: John Bledsoe <jmbledsoe@gmail.com>
671 lines
23 KiB
Python
671 lines
23 KiB
Python
"""Test ChatGroq chat model."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
from typing import Any, Optional, cast
|
|
|
|
import pytest
|
|
from groq import BadRequestError
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, LLMResult
|
|
from pydantic import BaseModel, Field
|
|
|
|
from langchain_groq import ChatGroq
|
|
from tests.unit_tests.fake.callbacks import (
|
|
FakeCallbackHandler,
|
|
FakeCallbackHandlerWithChatStart,
|
|
)
|
|
|
|
DEFAULT_MODEL_NAME = "openai/gpt-oss-20b"
|
|
|
|
# gpt-oss doesn't support `reasoning_effort`
|
|
REASONING_MODEL_NAME = "deepseek-r1-distill-llama-70b"
|
|
|
|
|
|
#
|
|
# Smoke test Runnable interface
|
|
#
|
|
@pytest.mark.scheduled
|
|
def test_invoke() -> None:
|
|
"""Test Chat wrapper."""
|
|
chat = ChatGroq(
|
|
model=DEFAULT_MODEL_NAME,
|
|
temperature=0.7,
|
|
base_url=None,
|
|
groq_proxy=None,
|
|
timeout=10.0,
|
|
max_retries=3,
|
|
http_client=None,
|
|
n=1,
|
|
max_tokens=10,
|
|
default_headers=None,
|
|
default_query=None,
|
|
)
|
|
message = HumanMessage(content="Welcome to the Groqetship")
|
|
response = chat.invoke([message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_ainvoke() -> None:
|
|
"""Test ainvoke tokens from ChatGroq."""
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
|
|
|
|
result = await chat.ainvoke("Welcome to the Groqetship!", config={"tags": ["foo"]})
|
|
assert isinstance(result, BaseMessage)
|
|
assert isinstance(result.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_batch() -> None:
|
|
"""Test batch tokens from ChatGroq."""
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
|
|
|
|
result = chat.batch(["Hello!", "Welcome to the Groqetship!"])
|
|
for token in result:
|
|
assert isinstance(token, BaseMessage)
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_abatch() -> None:
|
|
"""Test abatch tokens from ChatGroq."""
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
|
|
|
|
result = await chat.abatch(["Hello!", "Welcome to the Groqetship!"])
|
|
for token in result:
|
|
assert isinstance(token, BaseMessage)
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_stream() -> None:
|
|
"""Test streaming tokens from Groq."""
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
|
|
|
|
for token in chat.stream("Welcome to the Groqetship!"):
|
|
assert isinstance(token, BaseMessageChunk)
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_astream() -> None:
|
|
"""Test streaming tokens from Groq."""
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
|
|
|
|
full: Optional[BaseMessageChunk] = None
|
|
chunks_with_token_counts = 0
|
|
chunks_with_response_metadata = 0
|
|
async for token in chat.astream("Welcome to the Groqetship!"):
|
|
assert isinstance(token, AIMessageChunk)
|
|
assert isinstance(token.content, str)
|
|
full = token if full is None else full + token
|
|
if token.usage_metadata is not None:
|
|
chunks_with_token_counts += 1
|
|
if token.response_metadata:
|
|
chunks_with_response_metadata += 1
|
|
if chunks_with_token_counts != 1 or chunks_with_response_metadata != 1:
|
|
msg = (
|
|
"Expected exactly one chunk with token counts or metadata. "
|
|
"AIMessageChunk aggregation adds / appends these metadata. Check that "
|
|
"this is behaving properly."
|
|
)
|
|
raise AssertionError(msg)
|
|
assert isinstance(full, AIMessageChunk)
|
|
assert full.usage_metadata is not None
|
|
assert full.usage_metadata["input_tokens"] > 0
|
|
assert full.usage_metadata["output_tokens"] > 0
|
|
assert (
|
|
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
|
|
== full.usage_metadata["total_tokens"]
|
|
)
|
|
for expected_metadata in ["model_name", "system_fingerprint"]:
|
|
assert full.response_metadata[expected_metadata]
|
|
|
|
|
|
#
|
|
# Test Legacy generate methods
|
|
#
|
|
@pytest.mark.scheduled
|
|
def test_generate() -> None:
|
|
"""Test sync generate."""
|
|
n = 1
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
|
|
message = HumanMessage(content="Hello", n=1)
|
|
response = chat.generate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
assert response.llm_output
|
|
assert response.llm_output["model_name"] == chat.model_name
|
|
for generations in response.generations:
|
|
assert len(generations) == n
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_agenerate() -> None:
|
|
"""Test async generation."""
|
|
n = 1
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10, n=1)
|
|
message = HumanMessage(content="Hello")
|
|
response = await chat.agenerate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
assert response.llm_output
|
|
assert response.llm_output["model_name"] == chat.model_name
|
|
for generations in response.generations:
|
|
assert len(generations) == n
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
#
|
|
# Test streaming flags in invoke and generate
|
|
#
|
|
@pytest.mark.scheduled
|
|
def test_invoke_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
chat = ChatGroq(
|
|
model=DEFAULT_MODEL_NAME,
|
|
max_tokens=2,
|
|
streaming=True,
|
|
temperature=0,
|
|
callbacks=[callback_handler],
|
|
)
|
|
message = HumanMessage(content="Welcome to the Groqetship")
|
|
response = chat.invoke([message])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, BaseMessage)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_agenerate_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandlerWithChatStart()
|
|
chat = ChatGroq(
|
|
model=DEFAULT_MODEL_NAME,
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
callbacks=[callback_handler],
|
|
)
|
|
message = HumanMessage(content="Welcome to the Groqetship")
|
|
response = await chat.agenerate([[message], [message]])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
assert response.llm_output is not None
|
|
assert response.llm_output["model_name"] == chat.model_name
|
|
for generations in response.generations:
|
|
assert len(generations) == 1
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
#
|
|
# Test reasoning output
|
|
#
|
|
def test_reasoning_output_invoke() -> None:
|
|
"""Test reasoning output from ChatGroq with invoke."""
|
|
chat = ChatGroq(
|
|
model=REASONING_MODEL_NAME,
|
|
reasoning_format="parsed",
|
|
)
|
|
message = [
|
|
SystemMessage(
|
|
content="You are a helpful assistant that translates English to French."
|
|
),
|
|
HumanMessage(content="I love programming."),
|
|
]
|
|
response = chat.invoke(message)
|
|
assert isinstance(response, AIMessage)
|
|
assert "reasoning_content" in response.additional_kwargs
|
|
assert isinstance(response.additional_kwargs["reasoning_content"], str)
|
|
assert len(response.additional_kwargs["reasoning_content"]) > 0
|
|
|
|
|
|
def test_reasoning_output_stream() -> None:
|
|
"""Test reasoning output from ChatGroq with stream."""
|
|
chat = ChatGroq(
|
|
model=REASONING_MODEL_NAME,
|
|
reasoning_format="parsed",
|
|
)
|
|
message = [
|
|
SystemMessage(
|
|
content="You are a helpful assistant that translates English to French."
|
|
),
|
|
HumanMessage(content="I love programming."),
|
|
]
|
|
|
|
full_response: Optional[AIMessageChunk] = None
|
|
for token in chat.stream(message):
|
|
assert isinstance(token, AIMessageChunk)
|
|
|
|
if full_response is None:
|
|
full_response = token
|
|
else:
|
|
# Casting since adding results in a type error
|
|
full_response = cast(AIMessageChunk, full_response + token)
|
|
|
|
assert full_response is not None
|
|
assert isinstance(full_response, AIMessageChunk)
|
|
assert "reasoning_content" in full_response.additional_kwargs
|
|
assert isinstance(full_response.additional_kwargs["reasoning_content"], str)
|
|
assert len(full_response.additional_kwargs["reasoning_content"]) > 0
|
|
|
|
|
|
def test_reasoning_effort_none() -> None:
|
|
"""Test that no reasoning output is returned if effort is set to none."""
|
|
chat = ChatGroq(
|
|
model="qwen/qwen3-32b", # Only qwen3 currently supports reasoning_effort = none
|
|
reasoning_effort="none",
|
|
)
|
|
message = HumanMessage(content="What is the capital of France?")
|
|
response = chat.invoke([message])
|
|
assert isinstance(response, AIMessage)
|
|
assert "reasoning_content" not in response.additional_kwargs
|
|
assert "<think>" not in response.content and "<think/>" not in response.content
|
|
|
|
|
|
@pytest.mark.parametrize("effort", ["low", "medium", "high"])
|
|
def test_reasoning_effort_levels(effort: str) -> None:
|
|
"""Test reasoning effort options for different levels."""
|
|
# As of now, only the new gpt-oss models support `'low'`, `'medium'`, and `'high'`
|
|
chat = ChatGroq(
|
|
model=DEFAULT_MODEL_NAME,
|
|
reasoning_effort=effort,
|
|
)
|
|
message = HumanMessage(content="What is the capital of France?")
|
|
response = chat.invoke([message])
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
assert len(response.content) > 0
|
|
assert response.response_metadata.get("reasoning_effort") == effort
|
|
|
|
|
|
@pytest.mark.parametrize("effort", ["low", "medium", "high"])
|
|
def test_reasoning_effort_invoke_override(effort: str) -> None:
|
|
"""Test that reasoning_effort in invoke() overrides class-level setting."""
|
|
# Create chat with no reasoning effort at class level
|
|
chat = ChatGroq(
|
|
model=DEFAULT_MODEL_NAME,
|
|
)
|
|
message = HumanMessage(content="What is the capital of France?")
|
|
|
|
# Override reasoning_effort in invoke()
|
|
response = chat.invoke([message], reasoning_effort=effort)
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
assert len(response.content) > 0
|
|
assert response.response_metadata.get("reasoning_effort") == effort
|
|
|
|
|
|
def test_reasoning_effort_invoke_override_different_level() -> None:
|
|
"""Test that reasoning_effort in invoke() overrides class-level setting."""
|
|
# Create chat with reasoning effort at class level
|
|
chat = ChatGroq(
|
|
model=DEFAULT_MODEL_NAME, # openai/gpt-oss-20b supports reasoning_effort
|
|
reasoning_effort="high",
|
|
)
|
|
message = HumanMessage(content="What is the capital of France?")
|
|
|
|
# Override reasoning_effort to 'low' in invoke()
|
|
response = chat.invoke([message], reasoning_effort="low")
|
|
assert isinstance(response, AIMessage)
|
|
assert isinstance(response.content, str)
|
|
assert len(response.content) > 0
|
|
# Should reflect the overridden value, not the class-level setting
|
|
assert response.response_metadata.get("reasoning_effort") == "low"
|
|
|
|
|
|
def test_reasoning_effort_streaming() -> None:
|
|
"""Test that reasoning_effort is captured in streaming response metadata."""
|
|
chat = ChatGroq(
|
|
model=DEFAULT_MODEL_NAME,
|
|
reasoning_effort="medium",
|
|
)
|
|
message = HumanMessage(content="What is the capital of France?")
|
|
|
|
chunks = list(chat.stream([message]))
|
|
assert len(chunks) > 0
|
|
|
|
# Find the final chunk with finish_reason
|
|
final_chunk = None
|
|
for chunk in chunks:
|
|
if chunk.response_metadata.get("finish_reason"):
|
|
final_chunk = chunk
|
|
break
|
|
|
|
assert final_chunk is not None
|
|
assert final_chunk.response_metadata.get("reasoning_effort") == "medium"
|
|
|
|
|
|
#
|
|
# Misc tests
|
|
#
|
|
def test_streaming_generation_info() -> None:
|
|
"""Test that generation info is preserved when streaming."""
|
|
|
|
class _FakeCallback(FakeCallbackHandler):
|
|
saved_things: dict = {}
|
|
|
|
def on_llm_end(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
# Save the generation
|
|
self.saved_things["generation"] = args[0]
|
|
|
|
callback = _FakeCallback()
|
|
chat = ChatGroq(
|
|
model="llama-3.1-8b-instant", # Use a model that properly streams content
|
|
max_tokens=2,
|
|
temperature=0,
|
|
callbacks=[callback],
|
|
)
|
|
list(chat.stream("Respond with the single word Hello", stop=["o"]))
|
|
generation = callback.saved_things["generation"]
|
|
# `Hello!` is two tokens, assert that that is what is returned
|
|
assert isinstance(generation, LLMResult)
|
|
assert generation.generations[0][0].text == "Hell"
|
|
|
|
|
|
def test_system_message() -> None:
|
|
"""Test ChatGroq wrapper with system message."""
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, max_tokens=10)
|
|
system_message = SystemMessage(content="You are to chat with the user.")
|
|
human_message = HumanMessage(content="Hello")
|
|
response = chat.invoke([system_message, human_message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_tool_choice() -> None:
|
|
"""Test that tool choice is respected."""
|
|
llm = ChatGroq(model=DEFAULT_MODEL_NAME)
|
|
|
|
class MyTool(BaseModel):
|
|
name: str
|
|
age: int
|
|
|
|
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
|
|
|
|
resp = with_tool.invoke("Who was the 27 year old named Erick? Use the tool.")
|
|
assert isinstance(resp, AIMessage)
|
|
assert resp.content == "" # should just be tool call
|
|
tool_calls = resp.additional_kwargs["tool_calls"]
|
|
assert len(tool_calls) == 1
|
|
tool_call = tool_calls[0]
|
|
assert tool_call["function"]["name"] == "MyTool"
|
|
assert json.loads(tool_call["function"]["arguments"]) == {
|
|
"age": 27,
|
|
"name": "Erick",
|
|
}
|
|
assert tool_call["type"] == "function"
|
|
|
|
assert isinstance(resp.tool_calls, list)
|
|
assert len(resp.tool_calls) == 1
|
|
tool_call = resp.tool_calls[0]
|
|
assert tool_call["name"] == "MyTool"
|
|
assert tool_call["args"] == {"name": "Erick", "age": 27}
|
|
|
|
|
|
def test_tool_choice_bool() -> None:
|
|
"""Test that tool choice is respected just passing in True."""
|
|
llm = ChatGroq(model=DEFAULT_MODEL_NAME)
|
|
|
|
class MyTool(BaseModel):
|
|
name: str
|
|
age: int
|
|
|
|
with_tool = llm.bind_tools([MyTool], tool_choice=True)
|
|
|
|
resp = with_tool.invoke("Who was the 27 year old named Erick? Use the tool.")
|
|
assert isinstance(resp, AIMessage)
|
|
assert resp.content == "" # should just be tool call
|
|
tool_calls = resp.additional_kwargs["tool_calls"]
|
|
assert len(tool_calls) == 1
|
|
tool_call = tool_calls[0]
|
|
assert tool_call["function"]["name"] == "MyTool"
|
|
assert json.loads(tool_call["function"]["arguments"]) == {
|
|
"age": 27,
|
|
"name": "Erick",
|
|
}
|
|
assert tool_call["type"] == "function"
|
|
|
|
|
|
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
|
|
def test_streaming_tool_call() -> None:
|
|
"""Test that tool choice is respected."""
|
|
llm = ChatGroq(model=DEFAULT_MODEL_NAME)
|
|
|
|
class MyTool(BaseModel):
|
|
name: str
|
|
age: int
|
|
|
|
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
|
|
|
|
resp = with_tool.stream("Who was the 27 year old named Erick?")
|
|
additional_kwargs = None
|
|
for chunk in resp:
|
|
assert isinstance(chunk, AIMessageChunk)
|
|
assert chunk.content == "" # should just be tool call
|
|
additional_kwargs = chunk.additional_kwargs
|
|
|
|
assert additional_kwargs is not None
|
|
tool_calls = additional_kwargs["tool_calls"]
|
|
assert len(tool_calls) == 1
|
|
tool_call = tool_calls[0]
|
|
assert tool_call["function"]["name"] == "MyTool"
|
|
assert json.loads(tool_call["function"]["arguments"]) == {
|
|
"age": 27,
|
|
"name": "Erick",
|
|
}
|
|
assert tool_call["type"] == "function"
|
|
|
|
assert isinstance(chunk, AIMessageChunk)
|
|
assert isinstance(chunk.tool_call_chunks, list)
|
|
assert len(chunk.tool_call_chunks) == 1
|
|
tool_call_chunk = chunk.tool_call_chunks[0]
|
|
assert tool_call_chunk["name"] == "MyTool"
|
|
assert isinstance(tool_call_chunk["args"], str)
|
|
assert json.loads(tool_call_chunk["args"]) == {"name": "Erick", "age": 27}
|
|
|
|
|
|
@pytest.mark.xfail(reason="Groq tool_choice doesn't currently force a tool call")
|
|
async def test_astreaming_tool_call() -> None:
|
|
"""Test that tool choice is respected."""
|
|
llm = ChatGroq(model=DEFAULT_MODEL_NAME)
|
|
|
|
class MyTool(BaseModel):
|
|
name: str
|
|
age: int
|
|
|
|
with_tool = llm.bind_tools([MyTool], tool_choice="MyTool")
|
|
|
|
resp = with_tool.astream("Who was the 27 year old named Erick?")
|
|
additional_kwargs = None
|
|
async for chunk in resp:
|
|
assert isinstance(chunk, AIMessageChunk)
|
|
assert chunk.content == "" # should just be tool call
|
|
additional_kwargs = chunk.additional_kwargs
|
|
|
|
assert additional_kwargs is not None
|
|
tool_calls = additional_kwargs["tool_calls"]
|
|
assert len(tool_calls) == 1
|
|
tool_call = tool_calls[0]
|
|
assert tool_call["function"]["name"] == "MyTool"
|
|
assert json.loads(tool_call["function"]["arguments"]) == {
|
|
"age": 27,
|
|
"name": "Erick",
|
|
}
|
|
assert tool_call["type"] == "function"
|
|
|
|
assert isinstance(chunk, AIMessageChunk)
|
|
assert isinstance(chunk.tool_call_chunks, list)
|
|
assert len(chunk.tool_call_chunks) == 1
|
|
tool_call_chunk = chunk.tool_call_chunks[0]
|
|
assert tool_call_chunk["name"] == "MyTool"
|
|
assert isinstance(tool_call_chunk["args"], str)
|
|
assert json.loads(tool_call_chunk["args"]) == {"name": "Erick", "age": 27}
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_json_mode_structured_output() -> None:
|
|
"""Test with_structured_output with json."""
|
|
|
|
class Joke(BaseModel):
|
|
"""Joke to tell user."""
|
|
|
|
setup: str = Field(description="question to set up a joke")
|
|
punchline: str = Field(description="answer to resolve the joke")
|
|
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME).with_structured_output(
|
|
Joke, method="json_mode"
|
|
)
|
|
result = chat.invoke(
|
|
"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys"
|
|
)
|
|
assert type(result) is Joke
|
|
assert len(result.setup) != 0
|
|
assert len(result.punchline) != 0
|
|
|
|
|
|
def test_setting_service_tier_class() -> None:
|
|
"""Test setting service tier defined at ChatGroq level."""
|
|
message = HumanMessage(content="Welcome to the Groqetship")
|
|
|
|
# Initialization
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="auto")
|
|
assert chat.service_tier == "auto"
|
|
response = chat.invoke([message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
assert response.response_metadata.get("service_tier") == "auto"
|
|
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="flex")
|
|
assert chat.service_tier == "flex"
|
|
response = chat.invoke([message])
|
|
assert response.response_metadata.get("service_tier") == "flex"
|
|
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="on_demand")
|
|
assert chat.service_tier == "on_demand"
|
|
response = chat.invoke([message])
|
|
assert response.response_metadata.get("service_tier") == "on_demand"
|
|
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME)
|
|
assert chat.service_tier == "on_demand"
|
|
response = chat.invoke([message])
|
|
assert response.response_metadata.get("service_tier") == "on_demand"
|
|
|
|
with pytest.raises(ValueError):
|
|
ChatGroq(model=DEFAULT_MODEL_NAME, service_tier=None) # type: ignore[arg-type]
|
|
with pytest.raises(ValueError):
|
|
ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="invalid") # type: ignore[arg-type]
|
|
|
|
|
|
def test_setting_service_tier_request() -> None:
|
|
"""Test setting service tier defined at request level."""
|
|
message = HumanMessage(content="Welcome to the Groqetship")
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME)
|
|
|
|
response = chat.invoke(
|
|
[message],
|
|
service_tier="auto",
|
|
)
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
assert response.response_metadata.get("service_tier") == "auto"
|
|
|
|
response = chat.invoke(
|
|
[message],
|
|
service_tier="flex",
|
|
)
|
|
assert response.response_metadata.get("service_tier") == "flex"
|
|
|
|
response = chat.invoke(
|
|
[message],
|
|
service_tier="on_demand",
|
|
)
|
|
assert response.response_metadata.get("service_tier") == "on_demand"
|
|
|
|
assert chat.service_tier == "on_demand"
|
|
response = chat.invoke(
|
|
[message],
|
|
)
|
|
assert response.response_metadata.get("service_tier") == "on_demand"
|
|
|
|
# If an `invoke` call is made with no service tier, we fall back to the class level
|
|
# setting
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="auto")
|
|
response = chat.invoke(
|
|
[message],
|
|
)
|
|
assert response.response_metadata.get("service_tier") == "auto"
|
|
|
|
response = chat.invoke(
|
|
[message],
|
|
service_tier="on_demand",
|
|
)
|
|
assert response.response_metadata.get("service_tier") == "on_demand"
|
|
|
|
with pytest.raises(BadRequestError):
|
|
response = chat.invoke(
|
|
[message],
|
|
service_tier="invalid",
|
|
)
|
|
|
|
response = chat.invoke(
|
|
[message],
|
|
service_tier=None,
|
|
)
|
|
assert response.response_metadata.get("service_tier") == "auto"
|
|
|
|
|
|
def test_setting_service_tier_streaming() -> None:
|
|
"""Test service tier settings for streaming calls."""
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="flex")
|
|
chunks = list(chat.stream("Why is the sky blue?", service_tier="auto"))
|
|
|
|
assert chunks[-1].response_metadata.get("service_tier") == "auto"
|
|
|
|
|
|
async def test_setting_service_tier_request_async() -> None:
|
|
"""Test async setting of service tier at the request level."""
|
|
chat = ChatGroq(model=DEFAULT_MODEL_NAME, service_tier="flex")
|
|
response = await chat.ainvoke("Hello!", service_tier="on_demand")
|
|
|
|
assert response.response_metadata.get("service_tier") == "on_demand"
|
|
|
|
|
|
# Groq does not currently support N > 1
|
|
# @pytest.mark.scheduled
|
|
# def test_chat_multiple_completions() -> None:
|
|
# """Test ChatGroq wrapper with multiple completions."""
|
|
# chat = ChatGroq(max_tokens=10, n=5)
|
|
# message = HumanMessage(content="Hello")
|
|
# response = chat._generate([message])
|
|
# assert isinstance(response, ChatResult)
|
|
# assert len(response.generations) == 5
|
|
# for generation in response.generations:
|
|
# assert isinstance(generation.message, BaseMessage)
|
|
# assert isinstance(generation.message.content, str)
|