langchain/libs/partners/ollama/tests/integration_tests/test_llms.py
Mason Daugherty ee4c2510eb
feat: port various nit changes from wip-v0.4 (#32506)
Lots of work that wasn't directly related to core
improvements/messages/testing functionality
2025-08-11 15:09:08 -04:00

156 lines
5.4 KiB
Python

"""Test OllamaLLM llm."""
import os
import pytest
from langchain_core.outputs import GenerationChunk
from langchain_core.runnables import RunnableConfig
from langchain_ollama.llms import OllamaLLM
MODEL_NAME = os.environ.get("OLLAMA_TEST_MODEL", "llama3.1")
REASONING_MODEL_NAME = os.environ.get("OLLAMA_REASONING_TEST_MODEL", "deepseek-r1:1.5b")
SAMPLE = "What is 3^3?"
def test_stream_text_tokens() -> None:
"""Test streaming raw string tokens from `OllamaLLM`."""
llm = OllamaLLM(model=MODEL_NAME)
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token, str)
@pytest.mark.parametrize(("model"), [(REASONING_MODEL_NAME)])
def test__stream_no_reasoning(model: str) -> None:
"""Test low-level chunk streaming of a simple prompt with `reasoning=False`."""
llm = OllamaLLM(model=model, num_ctx=2**12)
result_chunk = None
for chunk in llm._stream(SAMPLE):
# Should be a GenerationChunk
assert isinstance(chunk, GenerationChunk)
if result_chunk is None:
result_chunk = chunk
else:
result_chunk += chunk
# The final result must be a GenerationChunk with visible content
assert isinstance(result_chunk, GenerationChunk)
assert result_chunk.text
# No separate reasoning_content
assert "reasoning_content" not in result_chunk.generation_info # type: ignore[operator]
@pytest.mark.parametrize(("model"), [(REASONING_MODEL_NAME)])
def test__stream_with_reasoning(model: str) -> None:
"""Test low-level chunk streaming with `reasoning=True`."""
llm = OllamaLLM(model=model, num_ctx=2**12, reasoning=True)
result_chunk = None
for chunk in llm._stream(SAMPLE):
assert isinstance(chunk, GenerationChunk)
if result_chunk is None:
result_chunk = chunk
else:
result_chunk += chunk
assert isinstance(result_chunk, GenerationChunk)
assert result_chunk.text
# Should have extracted reasoning into generation_info
assert "reasoning_content" in result_chunk.generation_info # type: ignore[operator]
assert len(result_chunk.generation_info["reasoning_content"]) > 0 # type: ignore[index]
# And neither the visible nor the hidden portion contains <think> tags
assert "<think>" not in result_chunk.text and "</think>" not in result_chunk.text
assert "<think>" not in result_chunk.generation_info["reasoning_content"] # type: ignore[index]
assert "</think>" not in result_chunk.generation_info["reasoning_content"] # type: ignore[index]
async def test_astream_text_tokens() -> None:
"""Test async streaming raw string tokens from `OllamaLLM`."""
llm = OllamaLLM(model=MODEL_NAME)
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token, str)
@pytest.mark.parametrize(("model"), [(REASONING_MODEL_NAME)])
async def test__astream_no_reasoning(model: str) -> None:
"""Test low-level async chunk streaming with `reasoning=False`."""
llm = OllamaLLM(model=model, num_ctx=2**12)
result_chunk = None
async for chunk in llm._astream(SAMPLE):
assert isinstance(chunk, GenerationChunk)
if result_chunk is None:
result_chunk = chunk
else:
result_chunk += chunk
assert isinstance(result_chunk, GenerationChunk)
assert result_chunk.text
assert "reasoning_content" not in result_chunk.generation_info # type: ignore[operator]
@pytest.mark.parametrize(("model"), [(REASONING_MODEL_NAME)])
async def test__astream_with_reasoning(model: str) -> None:
"""Test low-level async chunk streaming with `reasoning=True`."""
llm = OllamaLLM(model=model, num_ctx=2**12, reasoning=True)
result_chunk = None
async for chunk in llm._astream(SAMPLE):
assert isinstance(chunk, GenerationChunk)
if result_chunk is None:
result_chunk = chunk
else:
result_chunk += chunk
assert isinstance(result_chunk, GenerationChunk)
assert result_chunk.text
assert "reasoning_content" in result_chunk.generation_info # type: ignore[operator]
assert len(result_chunk.generation_info["reasoning_content"]) > 0 # type: ignore[index]
async def test_abatch() -> None:
"""Test batch sync token generation from `OllamaLLM`."""
llm = OllamaLLM(model=MODEL_NAME)
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token, str)
async def test_abatch_tags() -> None:
"""Test batch sync token generation with tags."""
llm = OllamaLLM(model=MODEL_NAME)
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token, str)
def test_batch() -> None:
"""Test batch token generation from `OllamaLLM`."""
llm = OllamaLLM(model=MODEL_NAME)
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token, str)
async def test_ainvoke() -> None:
"""Test async invoke returning a string."""
llm = OllamaLLM(model=MODEL_NAME)
result = await llm.ainvoke("I'm Pickle Rick", config=RunnableConfig(tags=["foo"]))
assert isinstance(result, str)
def test_invoke() -> None:
"""Test sync invoke returning a string."""
llm = OllamaLLM(model=MODEL_NAME)
result = llm.invoke("I'm Pickle Rick", config=RunnableConfig(tags=["foo"]))
assert isinstance(result, str)