mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-14 23:26:34 +00:00
* update model validation due to change in [Ollama client](https://github.com/ollama/ollama) - ensure you are running the latest version (0.9.6) to use `validate_model_on_init` * add code example and fix formatting for ChatOllama reasoning * ensure that setting `reasoning` in invocation kwargs overrides class-level setting * tests
72 lines
2.2 KiB
Python
72 lines
2.2 KiB
Python
"""Test Ollama Chat API wrapper."""
|
|
|
|
from typing import Any
|
|
from unittest.mock import patch
|
|
|
|
from langchain_ollama import OllamaLLM
|
|
|
|
MODEL_NAME = "llama3.1"
|
|
|
|
|
|
def test_initialization() -> None:
|
|
"""Test integration initialization."""
|
|
OllamaLLM(model=MODEL_NAME)
|
|
|
|
|
|
def test_model_params() -> None:
|
|
# Test standard tracing params
|
|
llm = OllamaLLM(model=MODEL_NAME)
|
|
ls_params = llm._get_ls_params()
|
|
assert ls_params == {
|
|
"ls_provider": "ollama",
|
|
"ls_model_type": "llm",
|
|
"ls_model_name": MODEL_NAME,
|
|
}
|
|
|
|
llm = OllamaLLM(model=MODEL_NAME, num_predict=3)
|
|
ls_params = llm._get_ls_params()
|
|
assert ls_params == {
|
|
"ls_provider": "ollama",
|
|
"ls_model_type": "llm",
|
|
"ls_model_name": MODEL_NAME,
|
|
"ls_max_tokens": 3,
|
|
}
|
|
|
|
|
|
@patch("langchain_ollama.llms.validate_model")
|
|
def test_validate_model_on_init(mock_validate_model: Any) -> None:
|
|
"""Test that the model is validated on initialization when requested."""
|
|
# Test that validate_model is called when validate_model_on_init=True
|
|
OllamaLLM(model=MODEL_NAME, validate_model_on_init=True)
|
|
mock_validate_model.assert_called_once()
|
|
mock_validate_model.reset_mock()
|
|
|
|
# Test that validate_model is NOT called when validate_model_on_init=False
|
|
OllamaLLM(model=MODEL_NAME, validate_model_on_init=False)
|
|
mock_validate_model.assert_not_called()
|
|
|
|
# Test that validate_model is NOT called by default
|
|
OllamaLLM(model=MODEL_NAME)
|
|
mock_validate_model.assert_not_called()
|
|
|
|
|
|
def test_reasoning_aggregation() -> None:
|
|
"""Test that reasoning chunks are aggregated into final response."""
|
|
llm = OllamaLLM(model=MODEL_NAME, reasoning=True)
|
|
prompts = ["some prompt"]
|
|
mock_stream = [
|
|
{"thinking": "I am thinking.", "done": False},
|
|
{"thinking": " Still thinking.", "done": False},
|
|
{"response": "Final Answer.", "done": True},
|
|
]
|
|
|
|
with patch.object(llm, "_create_generate_stream") as mock_stream_method:
|
|
mock_stream_method.return_value = iter(mock_stream)
|
|
result = llm.generate(prompts)
|
|
|
|
assert result.generations[0][0].generation_info is not None
|
|
assert (
|
|
result.generations[0][0].generation_info["thinking"]
|
|
== "I am thinking. Still thinking."
|
|
)
|