langchain/libs/partners/openai/langchain_openai/tools/custom_tool.py
2025-08-07 16:30:01 -04:00

110 lines
3.2 KiB
Python

import inspect
from collections.abc import Awaitable
from typing import Any, Callable
from langchain_core.tools import tool
def _make_wrapped_func(func: Callable[..., str]) -> Callable[..., list[dict[str, Any]]]:
def wrapped(x: str) -> list[dict[str, Any]]:
return [{"type": "custom_tool_call_output", "output": func(x)}]
return wrapped
def _make_wrapped_coroutine(
coroutine: Callable[..., Awaitable[str]],
) -> Callable[..., Awaitable[list[dict[str, Any]]]]:
async def wrapped(*args: Any, **kwargs: Any) -> list[dict[str, Any]]:
result = await coroutine(*args, **kwargs)
return [{"type": "custom_tool_call_output", "output": result}]
return wrapped
def custom_tool(*args: Any, **kwargs: Any) -> Any:
"""Decorator to create an OpenAI custom tool.
Custom tools allow for tools with (potentially long) freeform string inputs.
See below for an example using LangGraph:
.. code-block:: python
@custom_tool
def execute_code(code: str) -> str:
\"\"\"Execute python code.\"\"\"
return "27"
llm = ChatOpenAI(model="gpt-5", output_version="responses/v1")
agent = create_react_agent(llm, [execute_code])
input_message = {"role": "user", "content": "Use the tool to calculate 3^3."}
for step in agent.stream(
{"messages": [input_message]},
stream_mode="values",
):
step["messages"][-1].pretty_print()
You can also specify a format for a corresponding context-free grammar using the
``format`` kwarg:
.. code-block:: python
from langchain_openai import ChatOpenAI, custom_tool
from langgraph.prebuilt import create_react_agent
grammar = \"\"\"
start: expr
expr: term (SP ADD SP term)* -> add
| term
term: factor (SP MUL SP factor)* -> mul
| factor
factor: INT
SP: " "
ADD: "+"
MUL: "*"
%import common.INT
\"\"\"
format = {"type": "grammar", "syntax": "lark", "definition": grammar}
# highlight-next-line
@custom_tool(format=format)
def do_math(input_string: str) -> str:
\"\"\"Do a mathematical operation.\"\"\"
return "27"
llm = ChatOpenAI(model="gpt-5", output_version="responses/v1")
agent = create_react_agent(llm, [do_math])
input_message = {"role": "user", "content": "Use the tool to calculate 3^3."}
for step in agent.stream(
{"messages": [input_message]},
stream_mode="values",
):
step["messages"][-1].pretty_print()
"""
def decorator(func: Callable[..., Any]) -> Any:
metadata = {"type": "custom_tool"}
if "format" in kwargs:
metadata["format"] = kwargs.pop("format")
tool_obj = tool(infer_schema=False, **kwargs)(func)
tool_obj.metadata = metadata
tool_obj.description = func.__doc__
if inspect.iscoroutinefunction(func):
tool_obj.coroutine = _make_wrapped_coroutine(func)
else:
tool_obj.func = _make_wrapped_func(func)
return tool_obj
if args and callable(args[0]) and not kwargs:
return decorator(args[0])
return decorator