mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-15 23:57:21 +00:00
Description The Perplexity chat model already returns a search_results field, but LangChain dropped it when mapping Perplexity responses to additional_kwargs. This patch adds "search_results" to the allowed attribute lists in both _stream and _generate, so downstream code can access it just like images, citations, or related_questions. Dependencies None. The change is purely internal; no new imports or optional dependencies required. https://community.perplexity.ai/t/new-feature-search-results-field-with-richer-metadata/398 --------- Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Mason Daugherty <github@mdrxy.com>
254 lines
9.4 KiB
Python
254 lines
9.4 KiB
Python
from typing import Any, Optional, cast
|
|
from unittest.mock import MagicMock
|
|
|
|
from langchain_core.messages import AIMessageChunk, BaseMessage
|
|
from pytest_mock import MockerFixture
|
|
|
|
from langchain_perplexity import ChatPerplexity
|
|
|
|
|
|
def test_perplexity_model_name_param() -> None:
|
|
llm = ChatPerplexity(model="foo")
|
|
assert llm.model == "foo"
|
|
|
|
|
|
def test_perplexity_model_kwargs() -> None:
|
|
llm = ChatPerplexity(model="test", model_kwargs={"foo": "bar"})
|
|
assert llm.model_kwargs == {"foo": "bar"}
|
|
|
|
|
|
def test_perplexity_initialization() -> None:
|
|
"""Test perplexity initialization."""
|
|
# Verify that chat perplexity can be initialized using a secret key provided
|
|
# as a parameter rather than an environment variable.
|
|
for model in [
|
|
ChatPerplexity(
|
|
model="test", timeout=1, api_key="test", temperature=0.7, verbose=True
|
|
),
|
|
ChatPerplexity(
|
|
model="test",
|
|
request_timeout=1,
|
|
pplx_api_key="test",
|
|
temperature=0.7,
|
|
verbose=True,
|
|
),
|
|
]:
|
|
assert model.request_timeout == 1
|
|
assert (
|
|
model.pplx_api_key is not None
|
|
and model.pplx_api_key.get_secret_value() == "test"
|
|
)
|
|
|
|
|
|
def test_perplexity_stream_includes_citations(mocker: MockerFixture) -> None:
|
|
"""Test that the stream method includes citations in the additional_kwargs."""
|
|
llm = ChatPerplexity(model="test", timeout=30, verbose=True)
|
|
mock_chunk_0 = {
|
|
"choices": [{"delta": {"content": "Hello "}, "finish_reason": None}],
|
|
"citations": ["example.com", "example2.com"],
|
|
}
|
|
mock_chunk_1 = {
|
|
"choices": [{"delta": {"content": "Perplexity"}, "finish_reason": None}],
|
|
"citations": ["example.com", "example2.com"],
|
|
}
|
|
mock_chunks: list[dict[str, Any]] = [mock_chunk_0, mock_chunk_1]
|
|
mock_stream = MagicMock()
|
|
mock_stream.__iter__.return_value = mock_chunks
|
|
patcher = mocker.patch.object(
|
|
llm.client.chat.completions, "create", return_value=mock_stream
|
|
)
|
|
stream = llm.stream("Hello langchain")
|
|
full: Optional[BaseMessage] = None
|
|
for i, chunk in enumerate(stream):
|
|
full = chunk if full is None else cast(BaseMessage, full + chunk)
|
|
assert chunk.content == mock_chunks[i]["choices"][0]["delta"]["content"]
|
|
if i == 0:
|
|
assert chunk.additional_kwargs["citations"] == [
|
|
"example.com",
|
|
"example2.com",
|
|
]
|
|
else:
|
|
assert "citations" not in chunk.additional_kwargs
|
|
assert isinstance(full, AIMessageChunk)
|
|
assert full.content == "Hello Perplexity"
|
|
assert full.additional_kwargs == {"citations": ["example.com", "example2.com"]}
|
|
|
|
patcher.assert_called_once()
|
|
|
|
|
|
def test_perplexity_stream_includes_citations_and_images(mocker: MockerFixture) -> None:
|
|
"""Test that the stream method includes citations in the additional_kwargs."""
|
|
llm = ChatPerplexity(model="test", timeout=30, verbose=True)
|
|
mock_chunk_0 = {
|
|
"choices": [{"delta": {"content": "Hello "}, "finish_reason": None}],
|
|
"citations": ["example.com", "example2.com"],
|
|
"images": [
|
|
{
|
|
"image_url": "mock_image_url",
|
|
"origin_url": "mock_origin_url",
|
|
"height": 100,
|
|
"width": 100,
|
|
}
|
|
],
|
|
}
|
|
mock_chunk_1 = {
|
|
"choices": [{"delta": {"content": "Perplexity"}, "finish_reason": None}],
|
|
"citations": ["example.com", "example2.com"],
|
|
"images": [
|
|
{
|
|
"image_url": "mock_image_url",
|
|
"origin_url": "mock_origin_url",
|
|
"height": 100,
|
|
"width": 100,
|
|
}
|
|
],
|
|
}
|
|
mock_chunks: list[dict[str, Any]] = [mock_chunk_0, mock_chunk_1]
|
|
mock_stream = MagicMock()
|
|
mock_stream.__iter__.return_value = mock_chunks
|
|
patcher = mocker.patch.object(
|
|
llm.client.chat.completions, "create", return_value=mock_stream
|
|
)
|
|
stream = llm.stream("Hello langchain")
|
|
full: Optional[BaseMessage] = None
|
|
for i, chunk in enumerate(stream):
|
|
full = chunk if full is None else cast(BaseMessage, full + chunk)
|
|
assert chunk.content == mock_chunks[i]["choices"][0]["delta"]["content"]
|
|
if i == 0:
|
|
assert chunk.additional_kwargs["citations"] == [
|
|
"example.com",
|
|
"example2.com",
|
|
]
|
|
assert chunk.additional_kwargs["images"] == [
|
|
{
|
|
"image_url": "mock_image_url",
|
|
"origin_url": "mock_origin_url",
|
|
"height": 100,
|
|
"width": 100,
|
|
}
|
|
]
|
|
else:
|
|
assert "citations" not in chunk.additional_kwargs
|
|
assert "images" not in chunk.additional_kwargs
|
|
assert isinstance(full, AIMessageChunk)
|
|
assert full.content == "Hello Perplexity"
|
|
assert full.additional_kwargs == {
|
|
"citations": ["example.com", "example2.com"],
|
|
"images": [
|
|
{
|
|
"image_url": "mock_image_url",
|
|
"origin_url": "mock_origin_url",
|
|
"height": 100,
|
|
"width": 100,
|
|
}
|
|
],
|
|
}
|
|
|
|
patcher.assert_called_once()
|
|
|
|
|
|
def test_perplexity_stream_includes_citations_and_related_questions(
|
|
mocker: MockerFixture,
|
|
) -> None:
|
|
"""Test that the stream method includes citations in the additional_kwargs."""
|
|
llm = ChatPerplexity(model="test", timeout=30, verbose=True)
|
|
mock_chunk_0 = {
|
|
"choices": [{"delta": {"content": "Hello "}, "finish_reason": None}],
|
|
"citations": ["example.com", "example2.com"],
|
|
"related_questions": ["example_question_1", "example_question_2"],
|
|
}
|
|
mock_chunk_1 = {
|
|
"choices": [{"delta": {"content": "Perplexity"}, "finish_reason": None}],
|
|
"citations": ["example.com", "example2.com"],
|
|
"related_questions": ["example_question_1", "example_question_2"],
|
|
}
|
|
mock_chunks: list[dict[str, Any]] = [mock_chunk_0, mock_chunk_1]
|
|
mock_stream = MagicMock()
|
|
mock_stream.__iter__.return_value = mock_chunks
|
|
patcher = mocker.patch.object(
|
|
llm.client.chat.completions, "create", return_value=mock_stream
|
|
)
|
|
stream = llm.stream("Hello langchain")
|
|
full: Optional[BaseMessage] = None
|
|
for i, chunk in enumerate(stream):
|
|
full = chunk if full is None else cast(BaseMessage, full + chunk)
|
|
assert chunk.content == mock_chunks[i]["choices"][0]["delta"]["content"]
|
|
if i == 0:
|
|
assert chunk.additional_kwargs["citations"] == [
|
|
"example.com",
|
|
"example2.com",
|
|
]
|
|
assert chunk.additional_kwargs["related_questions"] == [
|
|
"example_question_1",
|
|
"example_question_2",
|
|
]
|
|
else:
|
|
assert "citations" not in chunk.additional_kwargs
|
|
assert "related_questions" not in chunk.additional_kwargs
|
|
assert isinstance(full, AIMessageChunk)
|
|
assert full.content == "Hello Perplexity"
|
|
assert full.additional_kwargs == {
|
|
"citations": ["example.com", "example2.com"],
|
|
"related_questions": ["example_question_1", "example_question_2"],
|
|
}
|
|
|
|
patcher.assert_called_once()
|
|
|
|
|
|
def test_perplexity_stream_includes_citations_and_search_results(
|
|
mocker: MockerFixture,
|
|
) -> None:
|
|
"""Test that the stream method exposes `search_results` via additional_kwargs."""
|
|
llm = ChatPerplexity(model="test", timeout=30, verbose=True)
|
|
|
|
mock_chunk_0 = {
|
|
"choices": [{"delta": {"content": "Hello "}, "finish_reason": None}],
|
|
"citations": ["example.com/a", "example.com/b"],
|
|
"search_results": [
|
|
{"title": "Mock result", "url": "https://example.com/result", "date": None}
|
|
],
|
|
}
|
|
mock_chunk_1 = {
|
|
"choices": [{"delta": {"content": "Perplexity"}, "finish_reason": None}],
|
|
"citations": ["example.com/a", "example.com/b"],
|
|
"search_results": [
|
|
{"title": "Mock result", "url": "https://example.com/result", "date": None}
|
|
],
|
|
}
|
|
mock_chunks: list[dict[str, Any]] = [mock_chunk_0, mock_chunk_1]
|
|
mock_stream = MagicMock()
|
|
mock_stream.__iter__.return_value = mock_chunks
|
|
patcher = mocker.patch.object(
|
|
llm.client.chat.completions, "create", return_value=mock_stream
|
|
)
|
|
stream = llm.stream("Hello langchain")
|
|
full: Optional[BaseMessage] = None
|
|
for i, chunk in enumerate(stream):
|
|
full = chunk if full is None else cast(BaseMessage, full + chunk)
|
|
assert chunk.content == mock_chunks[i]["choices"][0]["delta"]["content"]
|
|
if i == 0:
|
|
assert chunk.additional_kwargs["citations"] == [
|
|
"example.com/a",
|
|
"example.com/b",
|
|
]
|
|
assert chunk.additional_kwargs["search_results"] == [
|
|
{
|
|
"title": "Mock result",
|
|
"url": "https://example.com/result",
|
|
"date": None,
|
|
}
|
|
]
|
|
else:
|
|
assert "citations" not in chunk.additional_kwargs
|
|
assert "search_results" not in chunk.additional_kwargs
|
|
assert isinstance(full, AIMessageChunk)
|
|
assert full.content == "Hello Perplexity"
|
|
assert full.additional_kwargs == {
|
|
"citations": ["example.com/a", "example.com/b"],
|
|
"search_results": [
|
|
{"title": "Mock result", "url": "https://example.com/result", "date": None}
|
|
],
|
|
}
|
|
|
|
patcher.assert_called_once()
|