Files
langchain/libs/partners/qdrant/langchain_qdrant/sparse_embeddings.py
2025-08-11 12:43:41 -04:00

34 lines
1.1 KiB
Python

from abc import ABC, abstractmethod
from langchain_core.runnables.config import run_in_executor
from pydantic import BaseModel, Field
class SparseVector(BaseModel, extra="forbid"):
"""Sparse vector structure."""
indices: list[int] = Field(..., description="indices must be unique")
values: list[float] = Field(
..., description="values and indices must be the same length"
)
class SparseEmbeddings(ABC):
"""An interface for sparse embedding models to use with Qdrant."""
@abstractmethod
def embed_documents(self, texts: list[str]) -> list[SparseVector]:
"""Embed search docs."""
@abstractmethod
def embed_query(self, text: str) -> SparseVector:
"""Embed query text."""
async def aembed_documents(self, texts: list[str]) -> list[SparseVector]:
"""Asynchronous Embed search docs."""
return await run_in_executor(None, self.embed_documents, texts)
async def aembed_query(self, text: str) -> SparseVector:
"""Asynchronous Embed query text."""
return await run_in_executor(None, self.embed_query, text)