mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-05 06:33:20 +00:00
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
68 lines
1.8 KiB
Python
68 lines
1.8 KiB
Python
"""Util that calls Golden."""
|
|
|
|
import json
|
|
from typing import Dict, Optional
|
|
|
|
import requests
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
GOLDEN_BASE_URL = "https://golden.com"
|
|
GOLDEN_TIMEOUT = 5000
|
|
|
|
|
|
class GoldenQueryAPIWrapper(BaseModel):
|
|
"""Wrapper for Golden.
|
|
|
|
Docs for using:
|
|
|
|
1. Go to https://golden.com and sign up for an account
|
|
2. Get your API Key from https://golden.com/settings/api
|
|
3. Save your API Key into GOLDEN_API_KEY env variable
|
|
|
|
"""
|
|
|
|
golden_api_key: Optional[str] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
golden_api_key = get_from_dict_or_env(
|
|
values, "golden_api_key", "GOLDEN_API_KEY"
|
|
)
|
|
values["golden_api_key"] = golden_api_key
|
|
|
|
return values
|
|
|
|
def run(self, query: str) -> str:
|
|
"""Run query through Golden Query API and return the JSON raw result."""
|
|
|
|
headers = {"apikey": self.golden_api_key or ""}
|
|
|
|
response = requests.post(
|
|
f"{GOLDEN_BASE_URL}/api/v2/public/queries/",
|
|
json={"prompt": query},
|
|
headers=headers,
|
|
timeout=GOLDEN_TIMEOUT,
|
|
)
|
|
if response.status_code != 201:
|
|
return response.text
|
|
|
|
content = json.loads(response.content)
|
|
query_id = content["id"]
|
|
|
|
response = requests.get(
|
|
(
|
|
f"{GOLDEN_BASE_URL}/api/v2/public/queries/{query_id}/results/"
|
|
"?pageSize=10"
|
|
),
|
|
headers=headers,
|
|
timeout=GOLDEN_TIMEOUT,
|
|
)
|
|
return response.text
|