mirror of
https://github.com/hwchase17/langchain.git
synced 2025-10-24 12:17:47 +00:00
Changes:
- ToolCall, InvalidToolCall and ToolCallChunk can all accept a "type"
parameter now
- LLM integration packages add "type" to all the above
- Tool supports ToolCall inputs that have "type" specified
- Tool outputs ToolMessage when a ToolCall is passed as input
- Tools can separately specify ToolMessage.content and
ToolMessage.raw_output
- Tools emit events for validation errors (using on_tool_error and
on_tool_end)
Example:
```python
@tool("structured_api", response_format="content_and_raw_output")
def _mock_structured_tool_with_raw_output(
arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> Tuple[str, dict]:
"""A Structured Tool"""
return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3}
def test_tool_call_input_tool_message_with_raw_output() -> None:
tool_call: Dict = {
"name": "structured_api",
"args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}},
"id": "123",
"type": "tool_call",
}
expected = ToolMessage("1 True", raw_output=tool_call["args"], tool_call_id="123")
tool = _mock_structured_tool_with_raw_output
actual = tool.invoke(tool_call)
assert actual == expected
tool_call.pop("type")
with pytest.raises(ValidationError):
tool.invoke(tool_call)
actual_content = tool.invoke(tool_call["args"])
assert actual_content == expected.content
```
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
916 lines
37 KiB
Python
916 lines
37 KiB
Python
import json
|
|
import logging
|
|
import os
|
|
import re
|
|
from operator import itemgetter
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Literal,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
TypedDict,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
from ibm_watsonx_ai import Credentials # type: ignore
|
|
from ibm_watsonx_ai.foundation_models import ModelInference # type: ignore
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
LangSmithParams,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
FunctionMessage,
|
|
FunctionMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
SystemMessage,
|
|
SystemMessageChunk,
|
|
ToolCallChunk,
|
|
ToolMessage,
|
|
ToolMessageChunk,
|
|
convert_to_messages,
|
|
)
|
|
from langchain_core.messages.tool import tool_call_chunk as create_tool_call_chunk
|
|
from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser
|
|
from langchain_core.output_parsers.base import OutputParserLike
|
|
from langchain_core.output_parsers.openai_tools import (
|
|
JsonOutputKeyToolsParser,
|
|
PydanticToolsParser,
|
|
make_invalid_tool_call,
|
|
parse_tool_call,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.prompt_values import ChatPromptValue
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
|
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from langchain_core.utils.function_calling import (
|
|
convert_to_openai_function,
|
|
convert_to_openai_tool,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
"""Convert a dictionary to a LangChain message.
|
|
|
|
Args:
|
|
_dict: The dictionary.
|
|
|
|
Returns:
|
|
The LangChain message.
|
|
"""
|
|
role = _dict.get("role")
|
|
if role == "user":
|
|
return HumanMessage(content=_dict.get("generated_text", ""))
|
|
else:
|
|
additional_kwargs: Dict = {}
|
|
tool_calls = []
|
|
invalid_tool_calls = []
|
|
try:
|
|
content = ""
|
|
|
|
raw_tool_calls = _dict.get("generated_text")
|
|
if raw_tool_calls:
|
|
json_parts = re.split(r"\n\n(?:<blank line>\n\n)?", raw_tool_calls)
|
|
parsed_raw_tool_calls = [
|
|
json.loads(part) for part in json_parts if part.strip()
|
|
]
|
|
additional_kwargs["tool_calls"] = parsed_raw_tool_calls
|
|
additional_kwargs["function_call"] = dict(parsed_raw_tool_calls)
|
|
|
|
for obj in parsed_raw_tool_calls:
|
|
b = json.dumps(obj["function"]["arguments"])
|
|
obj["function"]["arguments"] = b
|
|
|
|
for raw_tool_call in parsed_raw_tool_calls:
|
|
try:
|
|
raw_tool_call["id"] = "None"
|
|
tool_calls.append(
|
|
parse_tool_call(raw_tool_call, return_id=True)
|
|
)
|
|
except Exception as e:
|
|
invalid_tool_calls.append(
|
|
dict(make_invalid_tool_call(raw_tool_call, str(e)))
|
|
)
|
|
except: # noqa: E722
|
|
content = _dict.get("generated_text", "") or ""
|
|
|
|
return AIMessage(
|
|
content=content,
|
|
additional_kwargs=additional_kwargs,
|
|
tool_calls=tool_calls,
|
|
invalid_tool_calls=invalid_tool_calls,
|
|
)
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
"""Convert a LangChain message to a dictionary.
|
|
|
|
Args:
|
|
message: The LangChain message.
|
|
|
|
Returns:
|
|
The dictionary.
|
|
"""
|
|
message_dict: Dict[str, Any]
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
if "function_call" in message.additional_kwargs:
|
|
message_dict["function_call"] = message.additional_kwargs["function_call"]
|
|
# If function call only, content is None not empty string
|
|
if message_dict["content"] == "":
|
|
message_dict["content"] = None
|
|
if "tool_calls" in message.additional_kwargs:
|
|
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
|
|
# If tool calls only, content is None not empty string
|
|
if message_dict["content"] == "":
|
|
message_dict["content"] = None
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, FunctionMessage):
|
|
message_dict = {
|
|
"role": "function",
|
|
"content": message.content,
|
|
"name": message.name,
|
|
}
|
|
elif isinstance(message, ToolMessage):
|
|
message_dict = {
|
|
"role": "tool",
|
|
"content": message.content,
|
|
"tool_call_id": "None",
|
|
}
|
|
else:
|
|
raise TypeError(f"Got unknown type {message}")
|
|
if "name" in message.additional_kwargs:
|
|
message_dict["name"] = message.additional_kwargs["name"]
|
|
return message_dict
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
role = cast(str, _dict.get("role"))
|
|
content = cast(str, _dict.get("content") or "")
|
|
additional_kwargs: Dict = {}
|
|
tool_call_chunks: List[ToolCallChunk] = []
|
|
if _dict.get("function_call"):
|
|
function_call = dict(_dict["function_call"])
|
|
if "name" in function_call and function_call["name"] is None:
|
|
function_call["name"] = ""
|
|
additional_kwargs["function_call"] = function_call
|
|
if raw_tool_calls := _dict.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = raw_tool_calls
|
|
for rtc in raw_tool_calls:
|
|
try:
|
|
tool_call_chunks.append(
|
|
create_tool_call_chunk(
|
|
name=rtc["function"].get("name"),
|
|
args=rtc["function"].get("arguments"),
|
|
id=rtc.get("id"),
|
|
index=rtc.get("index"),
|
|
)
|
|
)
|
|
except KeyError:
|
|
pass
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content)
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
return AIMessageChunk(
|
|
content=content,
|
|
additional_kwargs=additional_kwargs,
|
|
tool_call_chunks=tool_call_chunks, # type: ignore[arg-type]
|
|
)
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
return SystemMessageChunk(content=content)
|
|
elif role == "function" or default_class == FunctionMessageChunk:
|
|
return FunctionMessageChunk(content=content, name=_dict["name"])
|
|
elif role == "tool" or default_class == ToolMessageChunk:
|
|
return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
|
|
elif role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role)
|
|
else:
|
|
return default_class(content=content) # type: ignore
|
|
|
|
|
|
class _FunctionCall(TypedDict):
|
|
name: str
|
|
|
|
|
|
class ChatWatsonx(BaseChatModel):
|
|
"""
|
|
IBM watsonx.ai large language chat models.
|
|
|
|
To use, you should have ``langchain_ibm`` python package installed,
|
|
and the environment variable ``WATSONX_APIKEY`` set with your API key, or pass
|
|
it as a named parameter to the constructor.
|
|
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames
|
|
parameters = {
|
|
GenTextParamsMetaNames.DECODING_METHOD: "sample",
|
|
GenTextParamsMetaNames.MAX_NEW_TOKENS: 100,
|
|
GenTextParamsMetaNames.MIN_NEW_TOKENS: 1,
|
|
GenTextParamsMetaNames.TEMPERATURE: 0.5,
|
|
GenTextParamsMetaNames.TOP_K: 50,
|
|
GenTextParamsMetaNames.TOP_P: 1,
|
|
}
|
|
|
|
from langchain_ibm import ChatWatsonx
|
|
watsonx_llm = ChatWatsonx(
|
|
model_id="meta-llama/llama-3-70b-instruct",
|
|
url="https://us-south.ml.cloud.ibm.com",
|
|
apikey="*****",
|
|
project_id="*****",
|
|
params=parameters,
|
|
)
|
|
"""
|
|
|
|
model_id: str = ""
|
|
"""Type of model to use."""
|
|
|
|
deployment_id: str = ""
|
|
"""Type of deployed model to use."""
|
|
|
|
project_id: str = ""
|
|
"""ID of the Watson Studio project."""
|
|
|
|
space_id: str = ""
|
|
"""ID of the Watson Studio space."""
|
|
|
|
url: Optional[SecretStr] = None
|
|
"""Url to Watson Machine Learning or CPD instance"""
|
|
|
|
apikey: Optional[SecretStr] = None
|
|
"""Apikey to Watson Machine Learning or CPD instance"""
|
|
|
|
token: Optional[SecretStr] = None
|
|
"""Token to CPD instance"""
|
|
|
|
password: Optional[SecretStr] = None
|
|
"""Password to CPD instance"""
|
|
|
|
username: Optional[SecretStr] = None
|
|
"""Username to CPD instance"""
|
|
|
|
instance_id: Optional[SecretStr] = None
|
|
"""Instance_id of CPD instance"""
|
|
|
|
version: Optional[SecretStr] = None
|
|
"""Version of CPD instance"""
|
|
|
|
params: Optional[dict] = None
|
|
"""Chat Model parameters to use during generate requests."""
|
|
|
|
verify: Union[str, bool] = ""
|
|
"""User can pass as verify one of following:
|
|
the path to a CA_BUNDLE file
|
|
the path of directory with certificates of trusted CAs
|
|
True - default path to truststore will be taken
|
|
False - no verification will be made"""
|
|
|
|
streaming: bool = False
|
|
""" Whether to stream the results or not. """
|
|
|
|
watsonx_model: ModelInference = Field(default=None, exclude=True) #: :meta private:
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
return False
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "watsonx-chat"
|
|
|
|
def _get_ls_params(
|
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
|
) -> LangSmithParams:
|
|
"""Get standard params for tracing."""
|
|
params = super()._get_ls_params(stop=stop, **kwargs)
|
|
params["ls_provider"] = "together"
|
|
params["ls_model_name"] = self.model_id
|
|
return params
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
"""A map of constructor argument names to secret ids.
|
|
|
|
For example:
|
|
{
|
|
"url": "WATSONX_URL",
|
|
"apikey": "WATSONX_APIKEY",
|
|
"token": "WATSONX_TOKEN",
|
|
"password": "WATSONX_PASSWORD",
|
|
"username": "WATSONX_USERNAME",
|
|
"instance_id": "WATSONX_INSTANCE_ID",
|
|
}
|
|
"""
|
|
return {
|
|
"url": "WATSONX_URL",
|
|
"apikey": "WATSONX_APIKEY",
|
|
"token": "WATSONX_TOKEN",
|
|
"password": "WATSONX_PASSWORD",
|
|
"username": "WATSONX_USERNAME",
|
|
"instance_id": "WATSONX_INSTANCE_ID",
|
|
}
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that credentials and python package exists in environment."""
|
|
values["url"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "url", "WATSONX_URL")
|
|
)
|
|
if "cloud.ibm.com" in values.get("url", "").get_secret_value():
|
|
values["apikey"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "apikey", "WATSONX_APIKEY")
|
|
)
|
|
else:
|
|
if (
|
|
not values["token"]
|
|
and "WATSONX_TOKEN" not in os.environ
|
|
and not values["password"]
|
|
and "WATSONX_PASSWORD" not in os.environ
|
|
and not values["apikey"]
|
|
and "WATSONX_APIKEY" not in os.environ
|
|
):
|
|
raise ValueError(
|
|
"Did not find 'token', 'password' or 'apikey',"
|
|
" please add an environment variable"
|
|
" `WATSONX_TOKEN`, 'WATSONX_PASSWORD' or 'WATSONX_APIKEY' "
|
|
"which contains it,"
|
|
" or pass 'token', 'password' or 'apikey'"
|
|
" as a named parameter."
|
|
)
|
|
elif values["token"] or "WATSONX_TOKEN" in os.environ:
|
|
values["token"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "token", "WATSONX_TOKEN")
|
|
)
|
|
elif values["password"] or "WATSONX_PASSWORD" in os.environ:
|
|
values["password"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "password", "WATSONX_PASSWORD")
|
|
)
|
|
values["username"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "username", "WATSONX_USERNAME")
|
|
)
|
|
elif values["apikey"] or "WATSONX_APIKEY" in os.environ:
|
|
values["apikey"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "apikey", "WATSONX_APIKEY")
|
|
)
|
|
values["username"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "username", "WATSONX_USERNAME")
|
|
)
|
|
if not values["instance_id"] or "WATSONX_INSTANCE_ID" not in os.environ:
|
|
values["instance_id"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "instance_id", "WATSONX_INSTANCE_ID")
|
|
)
|
|
credentials = Credentials(
|
|
url=values["url"].get_secret_value() if values["url"] else None,
|
|
api_key=values["apikey"].get_secret_value() if values["apikey"] else None,
|
|
token=values["token"].get_secret_value() if values["token"] else None,
|
|
password=values["password"].get_secret_value()
|
|
if values["password"]
|
|
else None,
|
|
username=values["username"].get_secret_value()
|
|
if values["username"]
|
|
else None,
|
|
instance_id=values["instance_id"].get_secret_value()
|
|
if values["instance_id"]
|
|
else None,
|
|
version=values["version"].get_secret_value() if values["version"] else None,
|
|
verify=values["verify"],
|
|
)
|
|
|
|
watsonx_chat = ModelInference(
|
|
model_id=values["model_id"],
|
|
deployment_id=values["deployment_id"],
|
|
credentials=credentials,
|
|
params=values["params"],
|
|
project_id=values["project_id"],
|
|
space_id=values["space_id"],
|
|
)
|
|
values["watsonx_model"] = watsonx_chat
|
|
|
|
return values
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else self.streaming
|
|
if should_stream:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop, **kwargs)
|
|
chat_prompt = self._create_chat_prompt(message_dicts)
|
|
|
|
tools = kwargs.get("tools")
|
|
|
|
if tools:
|
|
chat_prompt = f"""[AVAILABLE_TOOLS]
|
|
{json.dumps(tools[0], indent=2)}
|
|
[/AVAILABLE_TOOLS]
|
|
[INST]<<SYS>>You are Mixtral Chat function calling, an AI language model developed by
|
|
Mistral AI. You are a cautious assistant. You carefully follow instructions. You are
|
|
helpful and harmless and you follow ethical guidelines and promote positive behavior.
|
|
<</SYS>>
|
|
|
|
To use these tools you must always respond in JSON format containing `"type"` and
|
|
`"function"` key-value pairs. Also `"function"` key-value pair always containing
|
|
`"name"` and `"arguments"` key-value pairs.
|
|
|
|
Between subsequent JSONs should be one blank line.
|
|
|
|
Remember, even when answering to the user, you must still use this only JSON format!
|
|
|
|
{chat_prompt}[/INST]"""
|
|
|
|
if "tools" in kwargs:
|
|
del kwargs["tools"]
|
|
if "tool_choice" in kwargs:
|
|
del kwargs["tool_choice"]
|
|
|
|
response = self.watsonx_model.generate(
|
|
prompt=chat_prompt, **(kwargs | {"params": params})
|
|
)
|
|
return self._create_chat_result(response)
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._create_message_dicts(messages, stop, **kwargs)
|
|
chat_prompt = self._create_chat_prompt(message_dicts)
|
|
|
|
tools = kwargs.get("tools")
|
|
|
|
if tools:
|
|
chat_prompt = f"""[AVAILABLE_TOOLS]
|
|
{json.dumps(tools[0], indent=2)}
|
|
[/AVAILABLE_TOOLS]
|
|
[INST]<<SYS>>You are Mixtral Chat function calling, an AI language model developed by
|
|
Mistral AI. You are a cautious assistant. You carefully follow instructions. You are
|
|
helpful and harmless and you follow ethical guidelines and promote positive behavior.
|
|
<</SYS>>
|
|
|
|
To use these tools you must always respond in JSON format containing `"type"` and
|
|
`"function"` key-value pairs. Also `"function"` key-value pair always containing
|
|
`"name"` and `"arguments"` key-value pairs.
|
|
|
|
Between subsequent JSONs should be one blank line.
|
|
|
|
Remember, even when answering to the user, you must still use this only JSON format!
|
|
|
|
{chat_prompt}[/INST]"""
|
|
|
|
if "tools" in kwargs:
|
|
del kwargs["tools"]
|
|
if "tool_choice" in kwargs:
|
|
del kwargs["tool_choice"]
|
|
|
|
for chunk in self.watsonx_model.generate_text_stream(
|
|
prompt=chat_prompt, raw_response=True, **(kwargs | {"params": params})
|
|
):
|
|
if not isinstance(chunk, dict):
|
|
chunk = chunk.dict()
|
|
if len(chunk["results"]) == 0:
|
|
continue
|
|
choice = chunk["results"][0]
|
|
|
|
chunk = AIMessageChunk(
|
|
content=choice["generated_text"],
|
|
)
|
|
generation_info = {}
|
|
if finish_reason := choice.get("stop_reason"):
|
|
generation_info["finish_reason"] = finish_reason
|
|
logprobs = choice.get("logprobs")
|
|
if logprobs:
|
|
generation_info["logprobs"] = logprobs
|
|
chunk = ChatGenerationChunk(
|
|
message=chunk, generation_info=generation_info or None
|
|
)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(
|
|
chunk.content, chunk=chunk, logprobs=logprobs
|
|
)
|
|
|
|
yield chunk
|
|
|
|
def _create_chat_prompt(self, messages: List[Dict[str, Any]]) -> str:
|
|
prompt = ""
|
|
|
|
if self.model_id in ["ibm/granite-13b-chat-v1", "ibm/granite-13b-chat-v2"]:
|
|
for message in messages:
|
|
if message["role"] == "system":
|
|
prompt += "<|system|>\n" + message["content"] + "\n\n"
|
|
elif message["role"] == "assistant":
|
|
prompt += "<|assistant|>\n" + message["content"] + "\n\n"
|
|
elif message["role"] == "function":
|
|
prompt += "<|function|>\n" + message["content"] + "\n\n"
|
|
elif message["role"] == "tool":
|
|
prompt += "<|tool|>\n" + message["content"] + "\n\n"
|
|
else:
|
|
prompt += "<|user|>:\n" + message["content"] + "\n\n"
|
|
|
|
prompt += "<|assistant|>\n"
|
|
|
|
elif self.model_id in [
|
|
"meta-llama/llama-2-13b-chat",
|
|
"meta-llama/llama-2-70b-chat",
|
|
]:
|
|
for message in messages:
|
|
if message["role"] == "system":
|
|
prompt += "[INST] <<SYS>>\n" + message["content"] + "<</SYS>>\n\n"
|
|
elif message["role"] == "assistant":
|
|
prompt += message["content"] + "\n[INST]\n\n"
|
|
else:
|
|
prompt += message["content"] + "\n[/INST]\n"
|
|
|
|
else:
|
|
prompt = ChatPromptValue(
|
|
messages=convert_to_messages(messages) + [AIMessage(content="")]
|
|
).to_string()
|
|
|
|
return prompt
|
|
|
|
def _create_message_dicts(
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]], **kwargs: Any
|
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
|
params = {**self.params} if self.params else {}
|
|
params = params | {**kwargs.get("params", {})}
|
|
if stop is not None:
|
|
if params and "stop_sequences" in params:
|
|
raise ValueError(
|
|
"`stop_sequences` found in both the input and default params."
|
|
)
|
|
params = (params or {}) | {"stop_sequences": stop}
|
|
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
|
return message_dicts, params
|
|
|
|
def _create_chat_result(self, response: Union[dict]) -> ChatResult:
|
|
generations = []
|
|
sum_of_total_generated_tokens = 0
|
|
sum_of_total_input_tokens = 0
|
|
|
|
if response.get("error"):
|
|
raise ValueError(response.get("error"))
|
|
|
|
for res in response["results"]:
|
|
message = _convert_dict_to_message(res)
|
|
generation_info = dict(finish_reason=res.get("stop_reason"))
|
|
if "logprobs" in res:
|
|
generation_info["logprobs"] = res["logprobs"]
|
|
if "generated_token_count" in res:
|
|
sum_of_total_generated_tokens += res["generated_token_count"]
|
|
if "input_token_count" in res:
|
|
sum_of_total_input_tokens += res["input_token_count"]
|
|
total_token = sum_of_total_generated_tokens + sum_of_total_input_tokens
|
|
if total_token and isinstance(message, AIMessage):
|
|
message.usage_metadata = {
|
|
"input_tokens": sum_of_total_input_tokens,
|
|
"output_tokens": sum_of_total_generated_tokens,
|
|
"total_tokens": total_token,
|
|
}
|
|
gen = ChatGeneration(
|
|
message=message,
|
|
generation_info=generation_info,
|
|
)
|
|
generations.append(gen)
|
|
token_usage = {
|
|
"generated_token_count": sum_of_total_generated_tokens,
|
|
"input_token_count": sum_of_total_input_tokens,
|
|
}
|
|
llm_output = {
|
|
"token_usage": token_usage,
|
|
"model_name": self.model_id,
|
|
"system_fingerprint": response.get("system_fingerprint", ""),
|
|
}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
def bind_functions(
|
|
self,
|
|
functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
function_call: Optional[
|
|
Union[_FunctionCall, str, Literal["auto", "none"]]
|
|
] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind functions (and other objects) to this chat model.
|
|
|
|
Assumes model is compatible with IBM watsonx.ai function-calling API.
|
|
|
|
Args:
|
|
functions: A list of function definitions to bind to this chat model.
|
|
Can be a dictionary, pydantic model, or callable. Pydantic
|
|
models and callables will be automatically converted to
|
|
their schema dictionary representation.
|
|
function_call: Which function to require the model to call.
|
|
Must be the name of the single provided function or
|
|
"auto" to automatically determine which function to call
|
|
(if any).
|
|
**kwargs: Any additional parameters to pass to the
|
|
:class:`~langchain.runnable.Runnable` constructor.
|
|
"""
|
|
|
|
formatted_functions = [convert_to_openai_function(fn) for fn in functions]
|
|
if function_call is not None:
|
|
function_call = (
|
|
{"name": function_call}
|
|
if isinstance(function_call, str)
|
|
and function_call not in ("auto", "none")
|
|
else function_call
|
|
)
|
|
if isinstance(function_call, dict) and len(formatted_functions) != 1:
|
|
raise ValueError(
|
|
"When specifying `function_call`, you must provide exactly one "
|
|
"function."
|
|
)
|
|
if (
|
|
isinstance(function_call, dict)
|
|
and formatted_functions[0]["name"] != function_call["name"]
|
|
):
|
|
raise ValueError(
|
|
f"Function call {function_call} was specified, but the only "
|
|
f"provided function was {formatted_functions[0]['name']}."
|
|
)
|
|
kwargs = {**kwargs, "function_call": function_call}
|
|
return super().bind(
|
|
functions=formatted_functions,
|
|
**kwargs,
|
|
)
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind tool-like objects to this chat model.
|
|
|
|
Args:
|
|
tools: A list of tool definitions to bind to this chat model.
|
|
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
|
|
models, callables, and BaseTools will be automatically converted to
|
|
their schema dictionary representation.
|
|
**kwargs: Any additional parameters to pass to the
|
|
:class:`~langchain.runnable.Runnable` constructor.
|
|
"""
|
|
bind_tools_supported_models = ["mistralai/mixtral-8x7b-instruct-v01"]
|
|
if self.model_id not in bind_tools_supported_models:
|
|
raise Warning(
|
|
f"bind_tools() method for ChatWatsonx support only "
|
|
f"following models: {bind_tools_supported_models}"
|
|
)
|
|
|
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
|
|
|
return super().bind(tools=formatted_tools, **kwargs)
|
|
|
|
def with_structured_output(
|
|
self,
|
|
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
|
|
*,
|
|
method: Literal["function_calling", "json_mode"] = "function_calling",
|
|
include_raw: bool = False,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
|
then the model output will be an object of that class. If a dict then
|
|
the model output will be a dict. With a Pydantic class the returned
|
|
attributes will be validated, whereas with a dict they will not be. If
|
|
`method` is "function_calling" and `schema` is a dict, then the dict
|
|
must match the IBM watsonx.ai function-calling spec.
|
|
method: The method for steering model generation, either "function_calling"
|
|
or "json_mode". If "function_calling" then the schema will be converted
|
|
to an IBM watsonx.ai function and the returned model will make use of the
|
|
function-calling API. If "json_mode" then IBM watsonx.ai's JSON mode will be
|
|
used. Note that if using "json_mode" then you must include instructions
|
|
for formatting the output into the desired schema into the model call.
|
|
include_raw: If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
|
|
Returns:
|
|
A Runnable that takes any ChatModel input and returns as output:
|
|
|
|
If include_raw is True then a dict with keys:
|
|
raw: BaseMessage
|
|
parsed: Optional[_DictOrPydantic]
|
|
parsing_error: Optional[BaseException]
|
|
|
|
If include_raw is False then just _DictOrPydantic is returned,
|
|
where _DictOrPydantic depends on the schema:
|
|
|
|
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
|
class.
|
|
|
|
If schema is a dict then _DictOrPydantic is a dict.
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_ibm import ChatWatsonx
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = ChatWatsonx(...)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
|
|
# -> AnswerWithJustification(
|
|
# answer='They weigh the same',
|
|
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
|
# )
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
|
|
.. code-block:: python
|
|
|
|
from langchain_ibm import ChatWatsonx
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = ChatWatsonx(...)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
# -> {
|
|
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
|
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_ibm import ChatWatsonx
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
|
llm = ChatWatsonx(...)
|
|
structured_llm = llm.with_structured_output(dict_schema)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
# -> {
|
|
# 'answer': 'They weigh the same',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
|
# }
|
|
|
|
Example: JSON mode, Pydantic schema (method="json_mode", include_raw=True):
|
|
.. code-block::
|
|
|
|
from langchain_ibm import ChatWatsonx
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = ChatWatsonx(...)
|
|
structured_llm = llm.with_structured_output(
|
|
AnswerWithJustification,
|
|
method="json_mode",
|
|
include_raw=True
|
|
)
|
|
|
|
structured_llm.invoke(
|
|
"Answer the following question. "
|
|
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
|
"What's heavier a pound of bricks or a pound of feathers?"
|
|
)
|
|
# -> {
|
|
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
|
|
# 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
Example: JSON mode, no schema (schema=None, method="json_mode", include_raw=True):
|
|
.. code-block::
|
|
|
|
from langchain_ibm import ChatWatsonx
|
|
|
|
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
|
|
|
|
structured_llm.invoke(
|
|
"Answer the following question. "
|
|
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
|
"What's heavier a pound of bricks or a pound of feathers?"
|
|
)
|
|
# -> {
|
|
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
|
|
# 'parsed': {
|
|
# 'answer': 'They are both the same weight.',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'
|
|
# },
|
|
# 'parsing_error': None
|
|
# }
|
|
""" # noqa: E501
|
|
if kwargs:
|
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
|
is_pydantic_schema = _is_pydantic_class(schema)
|
|
if method == "function_calling":
|
|
if schema is None:
|
|
raise ValueError(
|
|
"schema must be specified when method is 'function_calling'. "
|
|
"Received None."
|
|
)
|
|
llm = self.bind_tools([schema], tool_choice=True)
|
|
if is_pydantic_schema:
|
|
output_parser: OutputParserLike = PydanticToolsParser(
|
|
tools=[schema], # type: ignore[list-item]
|
|
first_tool_only=True, # type: ignore[list-item]
|
|
)
|
|
else:
|
|
key_name = convert_to_openai_tool(schema)["function"]["name"]
|
|
output_parser = JsonOutputKeyToolsParser(
|
|
key_name=key_name, first_tool_only=True
|
|
)
|
|
elif method == "json_mode":
|
|
llm = self.bind(response_format={"type": "json_object"})
|
|
output_parser = (
|
|
PydanticOutputParser(pydantic_object=schema) # type: ignore[type-var, arg-type]
|
|
if is_pydantic_schema
|
|
else JsonOutputParser()
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unrecognized method argument. Expected one of 'function_calling' or "
|
|
f"'json_format'. Received: '{method}'"
|
|
)
|
|
|
|
if include_raw:
|
|
parser_assign = RunnablePassthrough.assign(
|
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
|
)
|
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
|
parser_with_fallback = parser_assign.with_fallbacks(
|
|
[parser_none], exception_key="parsing_error"
|
|
)
|
|
return RunnableMap(raw=llm) | parser_with_fallback
|
|
else:
|
|
return llm | output_parser
|
|
|
|
|
|
def _is_pydantic_class(obj: Any) -> bool:
|
|
return isinstance(obj, type) and issubclass(obj, BaseModel)
|