Files
langchain/templates/rag-gpt-crawler/rag_gpt_crawler/chain.py
Bagatur fa5d49f2c1 docs, experimental[patch], langchain[patch], community[patch]: update storage imports (#15429)
ran 
```bash
g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g"
g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g"
g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g"
g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g"
g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g"
g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g"
gco master libs/langchain/tests/unit_tests/*/test_imports.py
gco master libs/langchain/tests/unit_tests/**/test_public_api.py
```
2024-01-02 16:47:11 -05:00

63 lines
1.6 KiB
Python

import json
from pathlib import Path
from langchain.prompts import ChatPromptTemplate
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
# Load output from gpt crawler
path_to_gptcrawler = Path(__file__).parent.parent / "output.json"
data = json.loads(Path(path_to_gptcrawler).read_text())
docs = [
Document(
page_content=dict_["html"],
metadata={"title": dict_["title"], "url": dict_["url"]},
)
for dict_ in data
]
# Split
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
all_splits = text_splitter.split_documents(docs)
# Add to vectorDB
vectorstore = Chroma.from_documents(
documents=all_splits,
collection_name="rag-gpt-builder",
embedding=OpenAIEmbeddings(),
)
retriever = vectorstore.as_retriever()
# RAG prompt
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
# LLM
model = ChatOpenAI()
# RAG chain
chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| prompt
| model
| StrOutputParser()
)
# Add typing for input
class Question(BaseModel):
__root__: str
chain = chain.with_types(input_type=Question)