mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-04 06:03:31 +00:00
This fix is for #21726. When having other packages installed that require the `openai_api_base` environment variable, users are not able to instantiate the AzureChatModels or AzureEmbeddings. This PR adds a new value `ignore_openai_api_base` which is a bool. When set to True, it sets `openai_api_base` to `None` Two new tests were added for the `test_azure` and a new file `test_azure_embeddings` A different approach may be better for this. If you can think of better logic, let me know and I can adjust it. --------- Co-authored-by: Erick Friis <erick@langchain.dev>
965 lines
38 KiB
Python
965 lines
38 KiB
Python
"""Azure OpenAI chat wrapper."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import logging
|
|
import os
|
|
from operator import itemgetter
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
List,
|
|
Literal,
|
|
Optional,
|
|
Sequence,
|
|
Type,
|
|
TypedDict,
|
|
TypeVar,
|
|
Union,
|
|
overload,
|
|
)
|
|
|
|
import openai
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import LangSmithParams
|
|
from langchain_core.messages import BaseMessage
|
|
from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser
|
|
from langchain_core.output_parsers.base import OutputParserLike
|
|
from langchain_core.output_parsers.openai_tools import (
|
|
JsonOutputKeyToolsParser,
|
|
PydanticToolsParser,
|
|
)
|
|
from langchain_core.outputs import ChatResult
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
|
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
|
|
from langchain_openai.chat_models.base import BaseChatOpenAI
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
_BM = TypeVar("_BM", bound=BaseModel)
|
|
_DictOrPydanticClass = Union[Dict[str, Any], Type[_BM]]
|
|
_DictOrPydantic = Union[Dict, _BM]
|
|
|
|
|
|
class _AllReturnType(TypedDict):
|
|
raw: BaseMessage
|
|
parsed: Optional[_DictOrPydantic]
|
|
parsing_error: Optional[BaseException]
|
|
|
|
|
|
def _is_pydantic_class(obj: Any) -> bool:
|
|
return isinstance(obj, type) and issubclass(obj, BaseModel)
|
|
|
|
|
|
class AzureChatOpenAI(BaseChatOpenAI):
|
|
"""Azure OpenAI chat model integration.
|
|
|
|
Setup:
|
|
Head to the https://learn.microsoft.com/en-us/azure/ai-services/openai/chatgpt-quickstart?tabs=command-line%2Cpython-new&pivots=programming-language-python
|
|
to create your Azure OpenAI deployment.
|
|
|
|
Then install ``langchain-openai`` and set environment variables
|
|
``AZURE_OPENAI_API_KEY`` and ``AZURE_OPENAI_ENDPOINT``:
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-openai
|
|
|
|
export AZURE_OPENAI_API_KEY="your-api-key"
|
|
export AZURE_OPENAI_ENDPOINT="https://your-endpoint.openai.azure.com/"
|
|
|
|
Key init args — completion params:
|
|
azure_deployment: str
|
|
Name of Azure OpenAI deployment to use.
|
|
temperature: float
|
|
Sampling temperature.
|
|
max_tokens: Optional[int]
|
|
Max number of tokens to generate.
|
|
logprobs: Optional[bool]
|
|
Whether to return logprobs.
|
|
|
|
Key init args — client params:
|
|
api_version: str
|
|
Azure OpenAI API version to use. See more on the different versions here:
|
|
https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#rest-api-versioning
|
|
timeout: Union[float, Tuple[float, float], Any, None]
|
|
Timeout for requests.
|
|
max_retries: int
|
|
Max number of retries.
|
|
organization: Optional[str]
|
|
OpenAI organization ID. If not passed in will be read from env
|
|
var OPENAI_ORG_ID.
|
|
|
|
See full list of supported init args and their descriptions in the params section.
|
|
|
|
Instantiate:
|
|
.. code-block:: python
|
|
|
|
from langchain_openai import AzureChatOpenAI
|
|
|
|
llm = AzureChatOpenAI(
|
|
azure_deployment="your-deployment",
|
|
api_version="2024-05-01-preview",
|
|
temperature=0,
|
|
max_tokens=None,
|
|
timeout=None,
|
|
max_retries=2,
|
|
# organization="...",
|
|
# other params...
|
|
)
|
|
|
|
**NOTE**: Any param which is not explicitly supported will be passed directly to the
|
|
``openai.AzureOpenAI.chat.completions.create(...)`` API every time to the model is
|
|
invoked. For example:
|
|
.. code-block:: python
|
|
|
|
from langchain_openai import AzureChatOpenAI
|
|
import openai
|
|
|
|
AzureChatOpenAI(..., logprobs=True).invoke(...)
|
|
|
|
# results in underlying API call of:
|
|
|
|
openai.AzureOpenAI(..).chat.completions.create(..., logprobs=True)
|
|
|
|
# which is also equivalent to:
|
|
|
|
AzureChatOpenAI(...).invoke(..., logprobs=True)
|
|
|
|
Invoke:
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
(
|
|
"system",
|
|
"You are a helpful translator. Translate the user sentence to French.",
|
|
),
|
|
("human", "I love programming."),
|
|
]
|
|
llm.invoke(messages)
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessage(
|
|
content="J'adore programmer.",
|
|
usage_metadata={"input_tokens": 28, "output_tokens": 6, "total_tokens": 34},
|
|
response_metadata={
|
|
"token_usage": {
|
|
"completion_tokens": 6,
|
|
"prompt_tokens": 28,
|
|
"total_tokens": 34,
|
|
},
|
|
"model_name": "gpt-4",
|
|
"system_fingerprint": "fp_7ec89fabc6",
|
|
"prompt_filter_results": [
|
|
{
|
|
"prompt_index": 0,
|
|
"content_filter_results": {
|
|
"hate": {"filtered": False, "severity": "safe"},
|
|
"self_harm": {"filtered": False, "severity": "safe"},
|
|
"sexual": {"filtered": False, "severity": "safe"},
|
|
"violence": {"filtered": False, "severity": "safe"},
|
|
},
|
|
}
|
|
],
|
|
"finish_reason": "stop",
|
|
"logprobs": None,
|
|
"content_filter_results": {
|
|
"hate": {"filtered": False, "severity": "safe"},
|
|
"self_harm": {"filtered": False, "severity": "safe"},
|
|
"sexual": {"filtered": False, "severity": "safe"},
|
|
"violence": {"filtered": False, "severity": "safe"},
|
|
},
|
|
},
|
|
id="run-6d7a5282-0de0-4f27-9cc0-82a9db9a3ce9-0",
|
|
)
|
|
|
|
Stream:
|
|
.. code-block:: python
|
|
|
|
for chunk in llm.stream(messages):
|
|
print(chunk)
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessageChunk(content="", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
|
|
AIMessageChunk(content="J", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
|
|
AIMessageChunk(content="'", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
|
|
AIMessageChunk(content="ad", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
|
|
AIMessageChunk(content="ore", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
|
|
AIMessageChunk(content=" la", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
|
|
AIMessageChunk(content=" programm", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
|
|
AIMessageChunk(content="ation", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
|
|
AIMessageChunk(content=".", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
|
|
AIMessageChunk(
|
|
content="",
|
|
response_metadata={
|
|
"finish_reason": "stop",
|
|
"model_name": "gpt-4",
|
|
"system_fingerprint": "fp_811936bd4f",
|
|
},
|
|
id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f",
|
|
)
|
|
|
|
.. code-block:: python
|
|
|
|
stream = llm.stream(messages)
|
|
full = next(stream)
|
|
for chunk in stream:
|
|
full += chunk
|
|
full
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessageChunk(
|
|
content="J'adore la programmation.",
|
|
response_metadata={
|
|
"finish_reason": "stop",
|
|
"model_name": "gpt-4",
|
|
"system_fingerprint": "fp_811936bd4f",
|
|
},
|
|
id="run-ba60e41c-9258-44b8-8f3a-2f10599643b3",
|
|
)
|
|
|
|
Async:
|
|
.. code-block:: python
|
|
|
|
await llm.ainvoke(messages)
|
|
|
|
# stream:
|
|
# async for chunk in (await llm.astream(messages))
|
|
|
|
# batch:
|
|
# await llm.abatch([messages])
|
|
|
|
Tool calling:
|
|
.. code-block:: python
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
|
|
|
|
class GetWeather(BaseModel):
|
|
'''Get the current weather in a given location'''
|
|
|
|
location: str = Field(
|
|
..., description="The city and state, e.g. San Francisco, CA"
|
|
)
|
|
|
|
|
|
class GetPopulation(BaseModel):
|
|
'''Get the current population in a given location'''
|
|
|
|
location: str = Field(
|
|
..., description="The city and state, e.g. San Francisco, CA"
|
|
)
|
|
|
|
|
|
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
|
|
ai_msg = llm_with_tools.invoke(
|
|
"Which city is hotter today and which is bigger: LA or NY?"
|
|
)
|
|
ai_msg.tool_calls
|
|
|
|
.. code-block:: python
|
|
|
|
[
|
|
{
|
|
"name": "GetWeather",
|
|
"args": {"location": "Los Angeles, CA"},
|
|
"id": "call_6XswGD5Pqk8Tt5atYr7tfenU",
|
|
},
|
|
{
|
|
"name": "GetWeather",
|
|
"args": {"location": "New York, NY"},
|
|
"id": "call_ZVL15vA8Y7kXqOy3dtmQgeCi",
|
|
},
|
|
{
|
|
"name": "GetPopulation",
|
|
"args": {"location": "Los Angeles, CA"},
|
|
"id": "call_49CFW8zqC9W7mh7hbMLSIrXw",
|
|
},
|
|
{
|
|
"name": "GetPopulation",
|
|
"args": {"location": "New York, NY"},
|
|
"id": "call_6ghfKxV264jEfe1mRIkS3PE7",
|
|
},
|
|
]
|
|
|
|
Structured output:
|
|
.. code-block:: python
|
|
|
|
from typing import Optional
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
|
|
|
|
class Joke(BaseModel):
|
|
'''Joke to tell user.'''
|
|
|
|
setup: str = Field(description="The setup of the joke")
|
|
punchline: str = Field(description="The punchline to the joke")
|
|
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
|
|
|
|
|
|
structured_llm = llm.with_structured_output(Joke)
|
|
structured_llm.invoke("Tell me a joke about cats")
|
|
|
|
.. code-block:: python
|
|
|
|
Joke(
|
|
setup="Why was the cat sitting on the computer?",
|
|
punchline="To keep an eye on the mouse!",
|
|
rating=None,
|
|
)
|
|
|
|
See ``AzureChatOpenAI.with_structured_output()`` for more.
|
|
|
|
JSON mode:
|
|
.. code-block:: python
|
|
|
|
json_llm = llm.bind(response_format={"type": "json_object"})
|
|
ai_msg = json_llm.invoke(
|
|
"Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]"
|
|
)
|
|
ai_msg.content
|
|
|
|
.. code-block:: python
|
|
|
|
'\\n{\\n "random_ints": [23, 87, 45, 12, 78, 34, 56, 90, 11, 67]\\n}'
|
|
|
|
Image input:
|
|
.. code-block:: python
|
|
|
|
import base64
|
|
import httpx
|
|
from langchain_core.messages import HumanMessage
|
|
|
|
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
|
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
|
|
message = HumanMessage(
|
|
content=[
|
|
{"type": "text", "text": "describe the weather in this image"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
|
},
|
|
]
|
|
)
|
|
ai_msg = llm.invoke([message])
|
|
ai_msg.content
|
|
|
|
.. code-block:: python
|
|
|
|
"The weather in the image appears to be quite pleasant. The sky is mostly clear"
|
|
|
|
Token usage:
|
|
.. code-block:: python
|
|
|
|
ai_msg = llm.invoke(messages)
|
|
ai_msg.usage_metadata
|
|
|
|
.. code-block:: python
|
|
|
|
{"input_tokens": 28, "output_tokens": 5, "total_tokens": 33}
|
|
|
|
Logprobs:
|
|
.. code-block:: python
|
|
|
|
logprobs_llm = llm.bind(logprobs=True)
|
|
ai_msg = logprobs_llm.invoke(messages)
|
|
ai_msg.response_metadata["logprobs"]
|
|
|
|
.. code-block:: python
|
|
|
|
{
|
|
"content": [
|
|
{
|
|
"token": "J",
|
|
"bytes": [74],
|
|
"logprob": -4.9617593e-06,
|
|
"top_logprobs": [],
|
|
},
|
|
{
|
|
"token": "'adore",
|
|
"bytes": [39, 97, 100, 111, 114, 101],
|
|
"logprob": -0.25202933,
|
|
"top_logprobs": [],
|
|
},
|
|
{
|
|
"token": " la",
|
|
"bytes": [32, 108, 97],
|
|
"logprob": -0.20141791,
|
|
"top_logprobs": [],
|
|
},
|
|
{
|
|
"token": " programmation",
|
|
"bytes": [
|
|
32,
|
|
112,
|
|
114,
|
|
111,
|
|
103,
|
|
114,
|
|
97,
|
|
109,
|
|
109,
|
|
97,
|
|
116,
|
|
105,
|
|
111,
|
|
110,
|
|
],
|
|
"logprob": -1.9361265e-07,
|
|
"top_logprobs": [],
|
|
},
|
|
{
|
|
"token": ".",
|
|
"bytes": [46],
|
|
"logprob": -1.2233183e-05,
|
|
"top_logprobs": [],
|
|
},
|
|
]
|
|
}
|
|
|
|
Response metadata
|
|
.. code-block:: python
|
|
|
|
ai_msg = llm.invoke(messages)
|
|
ai_msg.response_metadata
|
|
|
|
.. code-block:: python
|
|
|
|
{
|
|
"token_usage": {
|
|
"completion_tokens": 6,
|
|
"prompt_tokens": 28,
|
|
"total_tokens": 34,
|
|
},
|
|
"model_name": "gpt-35-turbo",
|
|
"system_fingerprint": None,
|
|
"prompt_filter_results": [
|
|
{
|
|
"prompt_index": 0,
|
|
"content_filter_results": {
|
|
"hate": {"filtered": False, "severity": "safe"},
|
|
"self_harm": {"filtered": False, "severity": "safe"},
|
|
"sexual": {"filtered": False, "severity": "safe"},
|
|
"violence": {"filtered": False, "severity": "safe"},
|
|
},
|
|
}
|
|
],
|
|
"finish_reason": "stop",
|
|
"logprobs": None,
|
|
"content_filter_results": {
|
|
"hate": {"filtered": False, "severity": "safe"},
|
|
"self_harm": {"filtered": False, "severity": "safe"},
|
|
"sexual": {"filtered": False, "severity": "safe"},
|
|
"violence": {"filtered": False, "severity": "safe"},
|
|
},
|
|
}
|
|
""" # noqa: E501
|
|
|
|
azure_endpoint: Union[str, None] = None
|
|
"""Your Azure endpoint, including the resource.
|
|
|
|
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
|
|
Example: `https://example-resource.azure.openai.com/`
|
|
"""
|
|
deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment")
|
|
"""A model deployment.
|
|
|
|
If given sets the base client URL to include `/deployments/{azure_deployment}`.
|
|
Note: this means you won't be able to use non-deployment endpoints.
|
|
"""
|
|
openai_api_version: str = Field(default="", alias="api_version")
|
|
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
|
|
openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
|
|
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
|
|
azure_ad_token: Optional[SecretStr] = None
|
|
"""Your Azure Active Directory token.
|
|
|
|
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
|
|
For more:
|
|
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
|
|
"""
|
|
azure_ad_token_provider: Union[Callable[[], str], None] = None
|
|
"""A function that returns an Azure Active Directory token.
|
|
|
|
Will be invoked on every request.
|
|
"""
|
|
|
|
model_version: str = ""
|
|
"""The version of the model (e.g. "0125" for gpt-3.5-0125).
|
|
|
|
Azure OpenAI doesn't return model version with the response by default so it must
|
|
be manually specified if you want to use this information downstream, e.g. when
|
|
calculating costs.
|
|
|
|
When you specify the version, it will be appended to the model name in the
|
|
response. Setting correct version will help you to calculate the cost properly.
|
|
Model version is not validated, so make sure you set it correctly to get the
|
|
correct cost.
|
|
"""
|
|
|
|
openai_api_type: str = ""
|
|
"""Legacy, for openai<1.0.0 support."""
|
|
validate_base_url: bool = True
|
|
"""If legacy arg openai_api_base is passed in, try to infer if it is a base_url or
|
|
azure_endpoint and update client params accordingly.
|
|
"""
|
|
|
|
@classmethod
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
"""Get the namespace of the langchain object."""
|
|
return ["langchain", "chat_models", "azure_openai"]
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {
|
|
"openai_api_key": "AZURE_OPENAI_API_KEY",
|
|
"azure_ad_token": "AZURE_OPENAI_AD_TOKEN",
|
|
}
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
return True
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
if values["n"] < 1:
|
|
raise ValueError("n must be at least 1.")
|
|
if values["n"] > 1 and values["streaming"]:
|
|
raise ValueError("n must be 1 when streaming.")
|
|
|
|
# Check OPENAI_KEY for backwards compatibility.
|
|
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
|
|
# other forms of azure credentials.
|
|
openai_api_key = (
|
|
values["openai_api_key"]
|
|
or os.getenv("AZURE_OPENAI_API_KEY")
|
|
or os.getenv("OPENAI_API_KEY")
|
|
)
|
|
values["openai_api_key"] = (
|
|
convert_to_secret_str(openai_api_key) if openai_api_key else None
|
|
)
|
|
values["openai_api_base"] = (
|
|
values["openai_api_base"]
|
|
if "openai_api_base" in values
|
|
else os.getenv("OPENAI_API_BASE")
|
|
)
|
|
values["openai_api_version"] = values["openai_api_version"] or os.getenv(
|
|
"OPENAI_API_VERSION"
|
|
)
|
|
# Check OPENAI_ORGANIZATION for backwards compatibility.
|
|
values["openai_organization"] = (
|
|
values["openai_organization"]
|
|
or os.getenv("OPENAI_ORG_ID")
|
|
or os.getenv("OPENAI_ORGANIZATION")
|
|
)
|
|
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
|
|
"AZURE_OPENAI_ENDPOINT"
|
|
)
|
|
azure_ad_token = values["azure_ad_token"] or os.getenv("AZURE_OPENAI_AD_TOKEN")
|
|
values["azure_ad_token"] = (
|
|
convert_to_secret_str(azure_ad_token) if azure_ad_token else None
|
|
)
|
|
|
|
values["openai_api_type"] = get_from_dict_or_env(
|
|
values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
|
|
)
|
|
values["openai_proxy"] = get_from_dict_or_env(
|
|
values, "openai_proxy", "OPENAI_PROXY", default=""
|
|
)
|
|
# For backwards compatibility. Before openai v1, no distinction was made
|
|
# between azure_endpoint and base_url (openai_api_base).
|
|
openai_api_base = values["openai_api_base"]
|
|
if openai_api_base and values["validate_base_url"]:
|
|
if "/openai" not in openai_api_base:
|
|
raise ValueError(
|
|
"As of openai>=1.0.0, Azure endpoints should be specified via "
|
|
"the `azure_endpoint` param not `openai_api_base` "
|
|
"(or alias `base_url`)."
|
|
)
|
|
if values["deployment_name"]:
|
|
raise ValueError(
|
|
"As of openai>=1.0.0, if `azure_deployment` (or alias "
|
|
"`deployment_name`) is specified then "
|
|
"`base_url` (or alias `openai_api_base`) should not be. "
|
|
"If specifying `azure_deployment`/`deployment_name` then use "
|
|
"`azure_endpoint` instead of `base_url`.\n\n"
|
|
"For example, you could specify:\n\n"
|
|
'azure_endpoint="https://xxx.openai.azure.com/", '
|
|
'azure_deployment="my-deployment"\n\n'
|
|
"Or you can equivalently specify:\n\n"
|
|
'base_url="https://xxx.openai.azure.com/openai/deployments/my-deployment"'
|
|
)
|
|
client_params = {
|
|
"api_version": values["openai_api_version"],
|
|
"azure_endpoint": values["azure_endpoint"],
|
|
"azure_deployment": values["deployment_name"],
|
|
"api_key": (
|
|
values["openai_api_key"].get_secret_value()
|
|
if values["openai_api_key"]
|
|
else None
|
|
),
|
|
"azure_ad_token": (
|
|
values["azure_ad_token"].get_secret_value()
|
|
if values["azure_ad_token"]
|
|
else None
|
|
),
|
|
"azure_ad_token_provider": values["azure_ad_token_provider"],
|
|
"organization": values["openai_organization"],
|
|
"base_url": values["openai_api_base"],
|
|
"timeout": values["request_timeout"],
|
|
"max_retries": values["max_retries"],
|
|
"default_headers": values["default_headers"],
|
|
"default_query": values["default_query"],
|
|
}
|
|
if not values.get("client"):
|
|
sync_specific = {"http_client": values["http_client"]}
|
|
values["client"] = openai.AzureOpenAI(
|
|
**client_params, **sync_specific
|
|
).chat.completions
|
|
if not values.get("async_client"):
|
|
async_specific = {"http_client": values["http_async_client"]}
|
|
values["async_client"] = openai.AsyncAzureOpenAI(
|
|
**client_params, **async_specific
|
|
).chat.completions
|
|
return values
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
*,
|
|
tool_choice: Optional[
|
|
Union[dict, str, Literal["auto", "none", "required", "any"], bool]
|
|
] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
# As of 05/2024 Azure OpenAI doesn't support tool_choice="required".
|
|
# TODO: Update this condition once tool_choice="required" is supported.
|
|
if tool_choice in ("any", "required", True):
|
|
if len(tools) > 1:
|
|
raise ValueError(
|
|
f"Azure OpenAI does not currently support {tool_choice=}. Should "
|
|
f"be one of 'auto', 'none', or the name of the tool to call."
|
|
)
|
|
else:
|
|
tool_choice = convert_to_openai_tool(tools[0])["function"]["name"]
|
|
return super().bind_tools(tools, tool_choice=tool_choice, **kwargs)
|
|
|
|
# TODO: Fix typing.
|
|
@overload # type: ignore[override]
|
|
def with_structured_output(
|
|
self,
|
|
schema: Optional[_DictOrPydanticClass] = None,
|
|
*,
|
|
method: Literal["function_calling", "json_mode"] = "function_calling",
|
|
include_raw: Literal[True] = True,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, _AllReturnType]:
|
|
...
|
|
|
|
@overload
|
|
def with_structured_output(
|
|
self,
|
|
schema: Optional[_DictOrPydanticClass] = None,
|
|
*,
|
|
method: Literal["function_calling", "json_mode"] = "function_calling",
|
|
include_raw: Literal[False] = False,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, _DictOrPydantic]:
|
|
...
|
|
|
|
def with_structured_output(
|
|
self,
|
|
schema: Optional[_DictOrPydanticClass] = None,
|
|
*,
|
|
method: Literal["function_calling", "json_mode"] = "function_calling",
|
|
include_raw: bool = False,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, _DictOrPydantic]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
|
then the model output will be an object of that class. If a dict then
|
|
the model output will be a dict. With a Pydantic class the returned
|
|
attributes will be validated, whereas with a dict they will not be. If
|
|
`method` is "function_calling" and `schema` is a dict, then the dict
|
|
must match the OpenAI function-calling spec or be a valid JSON schema
|
|
with top level 'title' and 'description' keys specified.
|
|
method: The method for steering model generation, either "function_calling"
|
|
or "json_mode". If "function_calling" then the schema will be converted
|
|
to an OpenAI function and the returned model will make use of the
|
|
function-calling API. If "json_mode" then OpenAI's JSON mode will be
|
|
used. Note that if using "json_mode" then you must include instructions
|
|
for formatting the output into the desired schema into the model call.
|
|
include_raw: If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
|
|
Returns:
|
|
A Runnable that takes any ChatModel input and returns as output:
|
|
|
|
If include_raw is True then a dict with keys:
|
|
raw: BaseMessage
|
|
parsed: Optional[_DictOrPydantic]
|
|
parsing_error: Optional[BaseException]
|
|
|
|
If include_raw is False then just _DictOrPydantic is returned,
|
|
where _DictOrPydantic depends on the schema:
|
|
|
|
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
|
class.
|
|
|
|
If schema is a dict then _DictOrPydantic is a dict.
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_openai import AzureChatOpenAI
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
|
|
answer: str
|
|
justification: str
|
|
|
|
|
|
llm = AzureChatOpenAI(azure_deployment="gpt-35-turbo", temperature=0)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
|
|
# -> AnswerWithJustification(
|
|
# answer='They weigh the same',
|
|
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
|
# )
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
|
|
.. code-block:: python
|
|
|
|
from langchain_openai import AzureChatOpenAI
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
|
|
answer: str
|
|
justification: str
|
|
|
|
|
|
llm = AzureChatOpenAI(azure_deployment="gpt-35-turbo", temperature=0)
|
|
structured_llm = llm.with_structured_output(
|
|
AnswerWithJustification, include_raw=True
|
|
)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
# -> {
|
|
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
|
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_openai import AzureChatOpenAI
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
|
|
answer: str
|
|
justification: str
|
|
|
|
|
|
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
|
llm = AzureChatOpenAI(azure_deployment="gpt-35-turbo", temperature=0)
|
|
structured_llm = llm.with_structured_output(dict_schema)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
# -> {
|
|
# 'answer': 'They weigh the same',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
|
# }
|
|
|
|
Example: JSON mode, Pydantic schema (method="json_mode", include_raw=True):
|
|
.. code-block::
|
|
|
|
from langchain_openai import AzureChatOpenAI
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = AzureChatOpenAI(azure_deployment="gpt-35-turbo", temperature=0)
|
|
structured_llm = llm.with_structured_output(
|
|
AnswerWithJustification,
|
|
method="json_mode",
|
|
include_raw=True
|
|
)
|
|
|
|
structured_llm.invoke(
|
|
"Answer the following question. "
|
|
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
|
"What's heavier a pound of bricks or a pound of feathers?"
|
|
)
|
|
# -> {
|
|
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
|
|
# 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
Example: JSON mode, no schema (schema=None, method="json_mode", include_raw=True):
|
|
.. code-block::
|
|
|
|
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
|
|
|
|
structured_llm.invoke(
|
|
"Answer the following question. "
|
|
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
|
"What's heavier a pound of bricks or a pound of feathers?"
|
|
)
|
|
# -> {
|
|
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
|
|
# 'parsed': {
|
|
# 'answer': 'They are both the same weight.',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'
|
|
# },
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
|
|
""" # noqa: E501
|
|
if kwargs:
|
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
|
is_pydantic_schema = _is_pydantic_class(schema)
|
|
if method == "function_calling":
|
|
if schema is None:
|
|
raise ValueError(
|
|
"schema must be specified when method is 'function_calling'. "
|
|
"Received None."
|
|
)
|
|
tool_name = convert_to_openai_tool(schema)["function"]["name"]
|
|
llm = self.bind_tools([schema], tool_choice=tool_name)
|
|
if is_pydantic_schema:
|
|
output_parser: OutputParserLike = PydanticToolsParser(
|
|
tools=[schema], first_tool_only=True
|
|
)
|
|
else:
|
|
output_parser = JsonOutputKeyToolsParser(
|
|
key_name=tool_name, first_tool_only=True
|
|
)
|
|
elif method == "json_mode":
|
|
llm = self.bind(response_format={"type": "json_object"})
|
|
output_parser = (
|
|
PydanticOutputParser(pydantic_object=schema)
|
|
if is_pydantic_schema
|
|
else JsonOutputParser()
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unrecognized method argument. Expected one of 'function_calling' or "
|
|
f"'json_mode'. Received: '{method}'"
|
|
)
|
|
|
|
if include_raw:
|
|
parser_assign = RunnablePassthrough.assign(
|
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
|
)
|
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
|
parser_with_fallback = parser_assign.with_fallbacks(
|
|
[parser_none], exception_key="parsing_error"
|
|
)
|
|
return RunnableMap(raw=llm) | parser_with_fallback
|
|
else:
|
|
return llm | output_parser
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
**{"azure_deployment": self.deployment_name},
|
|
**super()._identifying_params,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "azure-openai-chat"
|
|
|
|
@property
|
|
def lc_attributes(self) -> Dict[str, Any]:
|
|
return {
|
|
"openai_api_type": self.openai_api_type,
|
|
"openai_api_version": self.openai_api_version,
|
|
}
|
|
|
|
def _get_ls_params(
|
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
|
) -> LangSmithParams:
|
|
"""Get the parameters used to invoke the model."""
|
|
params = super()._get_ls_params(stop=stop, **kwargs)
|
|
params["ls_provider"] = "azure"
|
|
if self.deployment_name:
|
|
params["ls_model_name"] = self.deployment_name
|
|
return params
|
|
|
|
def _create_chat_result(
|
|
self, response: Union[dict, openai.BaseModel]
|
|
) -> ChatResult:
|
|
if not isinstance(response, dict):
|
|
response = response.model_dump()
|
|
for res in response["choices"]:
|
|
if res.get("finish_reason", None) == "content_filter":
|
|
raise ValueError(
|
|
"Azure has not provided the response due to a content filter "
|
|
"being triggered"
|
|
)
|
|
chat_result = super()._create_chat_result(response)
|
|
|
|
if "model" in response:
|
|
model = response["model"]
|
|
if self.model_version:
|
|
model = f"{model}-{self.model_version}"
|
|
|
|
chat_result.llm_output = chat_result.llm_output or {}
|
|
chat_result.llm_output["model_name"] = model
|
|
if "prompt_filter_results" in response:
|
|
chat_result.llm_output = chat_result.llm_output or {}
|
|
chat_result.llm_output["prompt_filter_results"] = response[
|
|
"prompt_filter_results"
|
|
]
|
|
for chat_gen, response_choice in zip(
|
|
chat_result.generations, response["choices"]
|
|
):
|
|
chat_gen.generation_info = chat_gen.generation_info or {}
|
|
chat_gen.generation_info["content_filter_results"] = response_choice.get(
|
|
"content_filter_results", {}
|
|
)
|
|
|
|
return chat_result
|