mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-10-31 07:41:40 +00:00 
			
		
		
		
	This can only be reviewed by [hiding whitespaces](https://github.com/langchain-ai/langchain/pull/30302/files?diff=unified&w=1). The motivation behind this PR is to get my hands on the docs and make the LangSmith teasing short and clear. Right now I don't know how to do it, but this could be an include in the future. --------- Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
		
			
				
	
	
		
			245 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			245 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|   "cells": [
 | |
|     {
 | |
|       "cell_type": "raw",
 | |
|       "id": "afaf8039",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "---\n",
 | |
|         "sidebar_label: __ModuleName__\n",
 | |
|         "---"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "9a3d6f34",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "# __ModuleName__Embeddings\n",
 | |
|         "\n",
 | |
|         "- [ ] TODO: Make sure API reference link is correct\n",
 | |
|         "\n",
 | |
|         "This will help you get started with __ModuleName__ embedding models using LangChain. For detailed documentation on `__ModuleName__Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/__package_name_short__/embeddings/__module_name__.embeddings__ModuleName__Embeddings.html).\n",
 | |
|         "\n",
 | |
|         "## Overview\n",
 | |
|         "### Integration details\n",
 | |
|         "\n",
 | |
|         "| Provider | Package |\n",
 | |
|         "|:--------:|:-------:|\n",
 | |
|         "| [__ModuleName__](/docs/integrations/providers/__package_name_short__/) | [__package_name__](https://python.langchain.com/v0.2/api_reference/__module_name__/embeddings/__module_name__.embeddings__ModuleName__Embeddings.html) |\n",
 | |
|         "\n",
 | |
|         "## Setup\n",
 | |
|         "\n",
 | |
|         "- [ ] TODO: Update with relevant info.\n",
 | |
|         "\n",
 | |
|         "To access __ModuleName__ embedding models you'll need to create a/an __ModuleName__ account, get an API key, and install the `__package_name__` integration package.\n",
 | |
|         "\n",
 | |
|         "### Credentials\n",
 | |
|         "\n",
 | |
|         "- TODO: Update with relevant info.\n",
 | |
|         "\n",
 | |
|         "Head to (TODO: link) to sign up to __ModuleName__ and generate an API key. Once you've done this set the __MODULE_NAME___API_KEY environment variable:"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "36521c2a",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "import getpass\n",
 | |
|         "import os\n",
 | |
|         "\n",
 | |
|         "if not os.getenv(\"__MODULE_NAME___API_KEY\"):\n",
 | |
|         "    os.environ[\"__MODULE_NAME___API_KEY\"] = getpass.getpass(\"Enter your __ModuleName__ API key: \")"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "c84fb993",
 | |
|       "metadata": {},
 | |
|       "source": "To enable automated tracing of your model calls, set your [LangSmith](https://docs.smith.langchain.com/) API key:"
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "39a4953b",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
 | |
|         "# os.environ[\"LANGSMITH_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "d9664366",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "### Installation\n",
 | |
|         "\n",
 | |
|         "The LangChain __ModuleName__ integration lives in the `__package_name__` package:"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "64853226",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "%pip install -qU __package_name__"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "45dd1724",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "## Instantiation\n",
 | |
|         "\n",
 | |
|         "Now we can instantiate our model object and generate chat completions:\n",
 | |
|         "\n",
 | |
|         "- TODO: Update model instantiation with relevant params."
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "9ea7a09b",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "from __module_name__ import __ModuleName__Embeddings\n",
 | |
|         "\n",
 | |
|         "embeddings = __ModuleName__Embeddings(\n",
 | |
|         "    model=\"model-name\",\n",
 | |
|         ")"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "77d271b6",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "## Indexing and Retrieval\n",
 | |
|         "\n",
 | |
|         "Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
 | |
|         "\n",
 | |
|         "Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "d817716b",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "# Create a vector store with a sample text\n",
 | |
|         "from langchain_core.vectorstores import InMemoryVectorStore\n",
 | |
|         "\n",
 | |
|         "text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
 | |
|         "\n",
 | |
|         "vectorstore = InMemoryVectorStore.from_texts(\n",
 | |
|         "    [text],\n",
 | |
|         "    embedding=embeddings,\n",
 | |
|         ")\n",
 | |
|         "\n",
 | |
|         "# Use the vectorstore as a retriever\n",
 | |
|         "retriever = vectorstore.as_retriever()\n",
 | |
|         "\n",
 | |
|         "# Retrieve the most similar text\n",
 | |
|         "retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
 | |
|         "\n",
 | |
|         "# show the retrieved document's content\n",
 | |
|         "retrieved_documents[0].page_content"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "e02b9855",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "## Direct Usage\n",
 | |
|         "\n",
 | |
|         "Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
 | |
|         "\n",
 | |
|         "You can directly call these methods to get embeddings for your own use cases.\n",
 | |
|         "\n",
 | |
|         "### Embed single texts\n",
 | |
|         "\n",
 | |
|         "You can embed single texts or documents with `embed_query`:"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "0d2befcd",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "single_vector = embeddings.embed_query(text)\n",
 | |
|         "print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "1b5a7d03",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "### Embed multiple texts\n",
 | |
|         "\n",
 | |
|         "You can embed multiple texts with `embed_documents`:"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "code",
 | |
|       "execution_count": null,
 | |
|       "id": "2f4d6e97",
 | |
|       "metadata": {},
 | |
|       "outputs": [],
 | |
|       "source": [
 | |
|         "text2 = (\n",
 | |
|         "    \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
 | |
|         ")\n",
 | |
|         "two_vectors = embeddings.embed_documents([text, text2])\n",
 | |
|         "for vector in two_vectors:\n",
 | |
|         "    print(str(vector)[:100]) # Show the first 100 characters of the vector"
 | |
|       ]
 | |
|     },
 | |
|     {
 | |
|       "cell_type": "markdown",
 | |
|       "id": "98785c12",
 | |
|       "metadata": {},
 | |
|       "source": [
 | |
|         "## API Reference\n",
 | |
|         "\n",
 | |
|         "For detailed documentation on `__ModuleName__Embeddings` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/embeddings/__module_name__.embeddings.__ModuleName__Embeddings.html).\n"
 | |
|       ]
 | |
|     }
 | |
|   ],
 | |
|   "metadata": {
 | |
|     "kernelspec": {
 | |
|       "display_name": "Python 3 (ipykernel)",
 | |
|       "language": "python",
 | |
|       "name": "python3"
 | |
|     },
 | |
|     "language_info": {
 | |
|       "codemirror_mode": {
 | |
|         "name": "ipython",
 | |
|         "version": 3
 | |
|       },
 | |
|       "file_extension": ".py",
 | |
|       "mimetype": "text/x-python",
 | |
|       "name": "python",
 | |
|       "nbconvert_exporter": "python",
 | |
|       "pygments_lexer": "ipython3",
 | |
|       "version": "3.10.5"
 | |
|     }
 | |
|   },
 | |
|   "nbformat": 4,
 | |
|   "nbformat_minor": 5
 | |
| }
 |