mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-28 15:00:23 +00:00
This PR introduces a @pre_init decorator that's a @root_validator(pre=True) but with all the defaults populated!
65 lines
1.9 KiB
Python
65 lines
1.9 KiB
Python
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra
|
|
from langchain_core.utils import pre_init
|
|
|
|
|
|
class ManifestWrapper(LLM):
|
|
"""HazyResearch's Manifest library."""
|
|
|
|
client: Any #: :meta private:
|
|
llm_kwargs: Optional[Dict] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@pre_init
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that python package exists in environment."""
|
|
try:
|
|
from manifest import Manifest
|
|
|
|
if not isinstance(values["client"], Manifest):
|
|
raise ValueError
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import manifest python package. "
|
|
"Please install it with `pip install manifest-ml`."
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
kwargs = self.llm_kwargs or {}
|
|
return {
|
|
**self.client.client_pool.get_current_client().get_model_params(),
|
|
**kwargs,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "manifest"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to LLM through Manifest."""
|
|
if stop is not None and len(stop) != 1:
|
|
raise NotImplementedError(
|
|
f"Manifest currently only supports a single stop token, got {stop}"
|
|
)
|
|
params = self.llm_kwargs or {}
|
|
params = {**params, **kwargs}
|
|
if stop is not None:
|
|
params["stop_token"] = stop
|
|
return self.client.run(prompt, **params)
|