mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-04 06:37:58 +00:00
Probably the most boring PR to review ;) Individual commits might be easier to digest --------- Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
118 lines
4.1 KiB
Python
118 lines
4.1 KiB
Python
"""Wrapper around Replicate API."""
|
|
import logging
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
from pydantic import Extra, Field, root_validator
|
|
|
|
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
|
from langchain.llms.base import LLM
|
|
from langchain.utils import get_from_dict_or_env
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Replicate(LLM):
|
|
"""Wrapper around Replicate models.
|
|
|
|
To use, you should have the ``replicate`` python package installed,
|
|
and the environment variable ``REPLICATE_API_TOKEN`` set with your API token.
|
|
You can find your token here: https://replicate.com/account
|
|
|
|
The model param is required, but any other model parameters can also
|
|
be passed in with the format input={model_param: value, ...}
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain.llms import Replicate
|
|
replicate = Replicate(model="stability-ai/stable-diffusion: \
|
|
27b93a2413e7f36cd83da926f365628\
|
|
0b2931564ff050bf9575f1fdf9bcd7478",
|
|
input={"image_dimensions": "512x512"})
|
|
"""
|
|
|
|
model: str
|
|
input: Dict[str, Any] = Field(default_factory=dict)
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
replicate_api_token: Optional[str] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic config."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name not in all_required_field_names:
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
logger.warning(
|
|
f"""{field_name} was transferred to model_kwargs.
|
|
Please confirm that {field_name} is what you intended."""
|
|
)
|
|
extra[field_name] = values.pop(field_name)
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
replicate_api_token = get_from_dict_or_env(
|
|
values, "REPLICATE_API_TOKEN", "REPLICATE_API_TOKEN"
|
|
)
|
|
values["replicate_api_token"] = replicate_api_token
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model": self.model,
|
|
**{"model_kwargs": self.model_kwargs},
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of model."""
|
|
return "replicate"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call to replicate endpoint."""
|
|
try:
|
|
import replicate as replicate_python
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import replicate python package. "
|
|
"Please install it with `pip install replicate`."
|
|
)
|
|
|
|
# get the model and version
|
|
model_str, version_str = self.model.split(":")
|
|
model = replicate_python.models.get(model_str)
|
|
version = model.versions.get(version_str)
|
|
|
|
# sort through the openapi schema to get the name of the first input
|
|
input_properties = sorted(
|
|
version.openapi_schema["components"]["schemas"]["Input"][
|
|
"properties"
|
|
].items(),
|
|
key=lambda item: item[1].get("x-order", 0),
|
|
)
|
|
first_input_name = input_properties[0][0]
|
|
|
|
inputs = {first_input_name: prompt, **self.input}
|
|
iterator = replicate_python.run(self.model, input={**inputs, **kwargs})
|
|
|
|
return "".join([output for output in iterator])
|