mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-17 21:11:40 +00:00
This pull request adds an enum class for the various types of agents used in the project, located in the `agent_types.py` file. Currently, the project is using hardcoded strings for the initialization of these agents, which can lead to errors and make the code harder to maintain. With the introduction of the new enums, the code will be more readable and less error-prone. The new enum members include: - ZERO_SHOT_REACT_DESCRIPTION - REACT_DOCSTORE - SELF_ASK_WITH_SEARCH - CONVERSATIONAL_REACT_DESCRIPTION - CHAT_ZERO_SHOT_REACT_DESCRIPTION - CHAT_CONVERSATIONAL_REACT_DESCRIPTION In this PR, I have also replaced the hardcoded strings with the appropriate enum members throughout the codebase, ensuring a smooth transition to the new approach.
218 lines
5.7 KiB
Plaintext
218 lines
5.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5371a9bb",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Tracing Walkthrough"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "17c04cc6-c93d-4b6c-a033-e897577f4ed1",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\"\n",
|
|
"\n",
|
|
"## Uncomment this if using hosted setup.\n",
|
|
"\n",
|
|
"# os.environ[\"LANGCHAIN_ENDPOINT\"] = \"https://langchain-api-gateway-57eoxz8z.uc.gateway.dev\" \n",
|
|
"\n",
|
|
"## Uncomment this if you want traces to be recorded to \"my_session\" instead of default.\n",
|
|
"\n",
|
|
"# os.environ[\"LANGCHAIN_SESSION\"] = \"my_session\" \n",
|
|
"\n",
|
|
"## Better to set this environment variable in the terminal\n",
|
|
"## Uncomment this if using hosted version. Replace \"my_api_key\" with your actual API Key.\n",
|
|
"\n",
|
|
"# os.environ[\"LANGCHAIN_API_KEY\"] = \"my_api_key\" \n",
|
|
"\n",
|
|
"import langchain\n",
|
|
"from langchain.agents import Tool, initialize_agent, load_tools\n",
|
|
"from langchain.agents.agent_types import AgentType\n",
|
|
"from langchain.chat_models import ChatOpenAI\n",
|
|
"from langchain.llms import OpenAI"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "1b62cd48",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Agent run with tracing. Ensure that OPENAI_API_KEY is set appropriately to run this example.\n",
|
|
"\n",
|
|
"llm = OpenAI(temperature=0)\n",
|
|
"tools = load_tools([\"llm-math\"], llm=llm)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "bfa16b79-aa4b-4d41-a067-70d1f593f667",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
|
"\u001b[32;1m\u001b[1;3m I need to use a calculator to solve this.\n",
|
|
"Action: Calculator\n",
|
|
"Action Input: 2^.123243\u001b[0m\n",
|
|
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 1.0891804557407723\n",
|
|
"\u001b[0m\n",
|
|
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
|
|
"Final Answer: 1.0891804557407723\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'1.0891804557407723'"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"agent = initialize_agent(\n",
|
|
" tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
|
|
")\n",
|
|
"\n",
|
|
"agent.run(\"What is 2 raised to .123243 power?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "4829eb1d",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
|
"\u001b[32;1m\u001b[1;3mQuestion: What is 2 raised to .123243 power?\n",
|
|
"Thought: I need a calculator to solve this problem.\n",
|
|
"Action:\n",
|
|
"```\n",
|
|
"{\n",
|
|
" \"action\": \"calculator\",\n",
|
|
" \"action_input\": \"2^0.123243\"\n",
|
|
"}\n",
|
|
"```\n",
|
|
"\u001b[0m\n",
|
|
"Observation: calculator is not a valid tool, try another one.\n",
|
|
"\u001b[32;1m\u001b[1;3mI made a mistake, I need to use the correct tool for this question.\n",
|
|
"Action:\n",
|
|
"```\n",
|
|
"{\n",
|
|
" \"action\": \"calculator\",\n",
|
|
" \"action_input\": \"2^0.123243\"\n",
|
|
"}\n",
|
|
"```\n",
|
|
"\n",
|
|
"\u001b[0m\n",
|
|
"Observation: calculator is not a valid tool, try another one.\n",
|
|
"\u001b[32;1m\u001b[1;3mI made a mistake, the tool name is actually \"calc\" instead of \"calculator\".\n",
|
|
"Action:\n",
|
|
"```\n",
|
|
"{\n",
|
|
" \"action\": \"calc\",\n",
|
|
" \"action_input\": \"2^0.123243\"\n",
|
|
"}\n",
|
|
"```\n",
|
|
"\n",
|
|
"\u001b[0m\n",
|
|
"Observation: calc is not a valid tool, try another one.\n",
|
|
"\u001b[32;1m\u001b[1;3mI made another mistake, the tool name is actually \"Calculator\" instead of \"calc\".\n",
|
|
"Action:\n",
|
|
"```\n",
|
|
"{\n",
|
|
" \"action\": \"Calculator\",\n",
|
|
" \"action_input\": \"2^0.123243\"\n",
|
|
"}\n",
|
|
"```\n",
|
|
"\n",
|
|
"\u001b[0m\n",
|
|
"Observation: \u001b[36;1m\u001b[1;3mAnswer: 1.0891804557407723\n",
|
|
"\u001b[0m\n",
|
|
"Thought:\u001b[32;1m\u001b[1;3mThe final answer is 1.0891804557407723.\n",
|
|
"Final Answer: 1.0891804557407723\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'1.0891804557407723'"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Agent run with tracing using a chat model\n",
|
|
"agent = initialize_agent(\n",
|
|
" tools, ChatOpenAI(temperature=0), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
|
|
")\n",
|
|
"\n",
|
|
"agent.run(\"What is 2 raised to .123243 power?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "76abfd82",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|