mirror of
https://github.com/hwchase17/langchain.git
synced 2025-04-27 19:46:55 +00:00
2615 lines
103 KiB
Python
2615 lines
103 KiB
Python
"""OpenAI chat wrapper."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import base64
|
|
import json
|
|
import logging
|
|
import os
|
|
import re
|
|
import ssl
|
|
import sys
|
|
import warnings
|
|
from functools import partial
|
|
from io import BytesIO
|
|
from math import ceil
|
|
from operator import itemgetter
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Literal,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
TypedDict,
|
|
TypeVar,
|
|
Union,
|
|
cast,
|
|
)
|
|
from urllib.parse import urlparse
|
|
|
|
import certifi
|
|
import openai
|
|
import tiktoken
|
|
from langchain_core._api.deprecation import deprecated
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
LangSmithParams,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
FunctionMessage,
|
|
FunctionMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
InvalidToolCall,
|
|
SystemMessage,
|
|
SystemMessageChunk,
|
|
ToolCall,
|
|
ToolMessage,
|
|
ToolMessageChunk,
|
|
)
|
|
from langchain_core.messages.ai import (
|
|
InputTokenDetails,
|
|
OutputTokenDetails,
|
|
UsageMetadata,
|
|
)
|
|
from langchain_core.messages.tool import tool_call_chunk
|
|
from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser
|
|
from langchain_core.output_parsers.openai_tools import (
|
|
JsonOutputKeyToolsParser,
|
|
PydanticToolsParser,
|
|
make_invalid_tool_call,
|
|
parse_tool_call,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.runnables import (
|
|
Runnable,
|
|
RunnableLambda,
|
|
RunnableMap,
|
|
RunnablePassthrough,
|
|
)
|
|
from langchain_core.runnables.config import run_in_executor
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils import get_pydantic_field_names
|
|
from langchain_core.utils.function_calling import (
|
|
convert_to_openai_function,
|
|
convert_to_openai_tool,
|
|
)
|
|
from langchain_core.utils.pydantic import (
|
|
PydanticBaseModel,
|
|
TypeBaseModel,
|
|
is_basemodel_subclass,
|
|
)
|
|
from langchain_core.utils.utils import _build_model_kwargs, from_env, secret_from_env
|
|
from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
|
|
from pydantic.v1 import BaseModel as BaseModelV1
|
|
from typing_extensions import Self
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# This SSL context is equivelent to the default `verify=True`.
|
|
# https://www.python-httpx.org/advanced/ssl/#configuring-client-instances
|
|
global_ssl_context = ssl.create_default_context(cafile=certifi.where())
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
"""Convert a dictionary to a LangChain message.
|
|
|
|
Args:
|
|
_dict: The dictionary.
|
|
|
|
Returns:
|
|
The LangChain message.
|
|
"""
|
|
role = _dict.get("role")
|
|
name = _dict.get("name")
|
|
id_ = _dict.get("id")
|
|
if role == "user":
|
|
return HumanMessage(content=_dict.get("content", ""), id=id_, name=name)
|
|
elif role == "assistant":
|
|
# Fix for azure
|
|
# Also OpenAI returns None for tool invocations
|
|
content = _dict.get("content", "") or ""
|
|
additional_kwargs: Dict = {}
|
|
if function_call := _dict.get("function_call"):
|
|
additional_kwargs["function_call"] = dict(function_call)
|
|
tool_calls = []
|
|
invalid_tool_calls = []
|
|
if raw_tool_calls := _dict.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = raw_tool_calls
|
|
for raw_tool_call in raw_tool_calls:
|
|
try:
|
|
tool_calls.append(parse_tool_call(raw_tool_call, return_id=True))
|
|
except Exception as e:
|
|
invalid_tool_calls.append(
|
|
make_invalid_tool_call(raw_tool_call, str(e))
|
|
)
|
|
if audio := _dict.get("audio"):
|
|
additional_kwargs["audio"] = audio
|
|
return AIMessage(
|
|
content=content,
|
|
additional_kwargs=additional_kwargs,
|
|
name=name,
|
|
id=id_,
|
|
tool_calls=tool_calls,
|
|
invalid_tool_calls=invalid_tool_calls,
|
|
)
|
|
elif role in ("system", "developer"):
|
|
if role == "developer":
|
|
additional_kwargs = {"__openai_role__": role}
|
|
else:
|
|
additional_kwargs = {}
|
|
return SystemMessage(
|
|
content=_dict.get("content", ""),
|
|
name=name,
|
|
id=id_,
|
|
additional_kwargs=additional_kwargs,
|
|
)
|
|
elif role == "function":
|
|
return FunctionMessage(
|
|
content=_dict.get("content", ""), name=cast(str, _dict.get("name")), id=id_
|
|
)
|
|
elif role == "tool":
|
|
additional_kwargs = {}
|
|
if "name" in _dict:
|
|
additional_kwargs["name"] = _dict["name"]
|
|
return ToolMessage(
|
|
content=_dict.get("content", ""),
|
|
tool_call_id=cast(str, _dict.get("tool_call_id")),
|
|
additional_kwargs=additional_kwargs,
|
|
name=name,
|
|
id=id_,
|
|
)
|
|
else:
|
|
return ChatMessage(content=_dict.get("content", ""), role=role, id=id_) # type: ignore[arg-type]
|
|
|
|
|
|
def _format_message_content(content: Any) -> Any:
|
|
"""Format message content."""
|
|
if content and isinstance(content, list):
|
|
# Remove unexpected block types
|
|
formatted_content = []
|
|
for block in content:
|
|
if (
|
|
isinstance(block, dict)
|
|
and "type" in block
|
|
and block["type"] == "tool_use"
|
|
):
|
|
continue
|
|
else:
|
|
formatted_content.append(block)
|
|
else:
|
|
formatted_content = content
|
|
|
|
return formatted_content
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
"""Convert a LangChain message to a dictionary.
|
|
|
|
Args:
|
|
message: The LangChain message.
|
|
|
|
Returns:
|
|
The dictionary.
|
|
"""
|
|
message_dict: Dict[str, Any] = {"content": _format_message_content(message.content)}
|
|
if (name := message.name or message.additional_kwargs.get("name")) is not None:
|
|
message_dict["name"] = name
|
|
|
|
# populate role and additional message data
|
|
if isinstance(message, ChatMessage):
|
|
message_dict["role"] = message.role
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict["role"] = "user"
|
|
elif isinstance(message, AIMessage):
|
|
message_dict["role"] = "assistant"
|
|
if "function_call" in message.additional_kwargs:
|
|
message_dict["function_call"] = message.additional_kwargs["function_call"]
|
|
if message.tool_calls or message.invalid_tool_calls:
|
|
message_dict["tool_calls"] = [
|
|
_lc_tool_call_to_openai_tool_call(tc) for tc in message.tool_calls
|
|
] + [
|
|
_lc_invalid_tool_call_to_openai_tool_call(tc)
|
|
for tc in message.invalid_tool_calls
|
|
]
|
|
elif "tool_calls" in message.additional_kwargs:
|
|
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
|
|
tool_call_supported_props = {"id", "type", "function"}
|
|
message_dict["tool_calls"] = [
|
|
{k: v for k, v in tool_call.items() if k in tool_call_supported_props}
|
|
for tool_call in message_dict["tool_calls"]
|
|
]
|
|
else:
|
|
pass
|
|
# If tool calls present, content null value should be None not empty string.
|
|
if "function_call" in message_dict or "tool_calls" in message_dict:
|
|
message_dict["content"] = message_dict["content"] or None
|
|
|
|
if "audio" in message.additional_kwargs:
|
|
# openai doesn't support passing the data back - only the id
|
|
# https://platform.openai.com/docs/guides/audio/multi-turn-conversations
|
|
raw_audio = message.additional_kwargs["audio"]
|
|
audio = (
|
|
{"id": message.additional_kwargs["audio"]["id"]}
|
|
if "id" in raw_audio
|
|
else raw_audio
|
|
)
|
|
message_dict["audio"] = audio
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict["role"] = message.additional_kwargs.get(
|
|
"__openai_role__", "system"
|
|
)
|
|
elif isinstance(message, FunctionMessage):
|
|
message_dict["role"] = "function"
|
|
elif isinstance(message, ToolMessage):
|
|
message_dict["role"] = "tool"
|
|
message_dict["tool_call_id"] = message.tool_call_id
|
|
|
|
supported_props = {"content", "role", "tool_call_id"}
|
|
message_dict = {k: v for k, v in message_dict.items() if k in supported_props}
|
|
else:
|
|
raise TypeError(f"Got unknown type {message}")
|
|
return message_dict
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
id_ = _dict.get("id")
|
|
role = cast(str, _dict.get("role"))
|
|
content = cast(str, _dict.get("content") or "")
|
|
additional_kwargs: Dict = {}
|
|
if _dict.get("function_call"):
|
|
function_call = dict(_dict["function_call"])
|
|
if "name" in function_call and function_call["name"] is None:
|
|
function_call["name"] = ""
|
|
additional_kwargs["function_call"] = function_call
|
|
tool_call_chunks = []
|
|
if raw_tool_calls := _dict.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = raw_tool_calls
|
|
try:
|
|
tool_call_chunks = [
|
|
tool_call_chunk(
|
|
name=rtc["function"].get("name"),
|
|
args=rtc["function"].get("arguments"),
|
|
id=rtc.get("id"),
|
|
index=rtc["index"],
|
|
)
|
|
for rtc in raw_tool_calls
|
|
]
|
|
except KeyError:
|
|
pass
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content, id=id_)
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
return AIMessageChunk(
|
|
content=content,
|
|
additional_kwargs=additional_kwargs,
|
|
id=id_,
|
|
tool_call_chunks=tool_call_chunks, # type: ignore[arg-type]
|
|
)
|
|
elif role in ("system", "developer") or default_class == SystemMessageChunk:
|
|
if role == "developer":
|
|
additional_kwargs = {"__openai_role__": "developer"}
|
|
else:
|
|
additional_kwargs = {}
|
|
return SystemMessageChunk(
|
|
content=content, id=id_, additional_kwargs=additional_kwargs
|
|
)
|
|
elif role == "function" or default_class == FunctionMessageChunk:
|
|
return FunctionMessageChunk(content=content, name=_dict["name"], id=id_)
|
|
elif role == "tool" or default_class == ToolMessageChunk:
|
|
return ToolMessageChunk(
|
|
content=content, tool_call_id=_dict["tool_call_id"], id=id_
|
|
)
|
|
elif role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role, id=id_)
|
|
else:
|
|
return default_class(content=content, id=id_) # type: ignore
|
|
|
|
|
|
def _update_token_usage(
|
|
overall_token_usage: Union[int, dict], new_usage: Union[int, dict]
|
|
) -> Union[int, dict]:
|
|
# Token usage is either ints or dictionaries
|
|
# `reasoning_tokens` is nested inside `completion_tokens_details`
|
|
if isinstance(new_usage, int):
|
|
if not isinstance(overall_token_usage, int):
|
|
raise ValueError(
|
|
f"Got different types for token usage: "
|
|
f"{type(new_usage)} and {type(overall_token_usage)}"
|
|
)
|
|
return new_usage + overall_token_usage
|
|
elif isinstance(new_usage, dict):
|
|
if not isinstance(overall_token_usage, dict):
|
|
raise ValueError(
|
|
f"Got different types for token usage: "
|
|
f"{type(new_usage)} and {type(overall_token_usage)}"
|
|
)
|
|
return {
|
|
k: _update_token_usage(overall_token_usage.get(k, 0), v)
|
|
for k, v in new_usage.items()
|
|
}
|
|
else:
|
|
warnings.warn(f"Unexpected type for token usage: {type(new_usage)}")
|
|
return new_usage
|
|
|
|
|
|
def _handle_openai_bad_request(e: openai.BadRequestError) -> None:
|
|
if (
|
|
"'response_format' of type 'json_schema' is not supported with this model"
|
|
) in e.message:
|
|
message = (
|
|
"This model does not support OpenAI's structured output feature, which "
|
|
"is the default method for `with_structured_output` as of "
|
|
"langchain-openai==0.3. To use `with_structured_output` with this model, "
|
|
'specify `method="function_calling"`.'
|
|
)
|
|
warnings.warn(message)
|
|
raise e
|
|
elif "Invalid schema for response_format" in e.message:
|
|
message = (
|
|
"Invalid schema for OpenAI's structured output feature, which is the "
|
|
"default method for `with_structured_output` as of langchain-openai==0.3. "
|
|
'Specify `method="function_calling"` instead or update your schema. '
|
|
"See supported schemas: "
|
|
"https://platform.openai.com/docs/guides/structured-outputs#supported-schemas" # noqa: E501
|
|
)
|
|
warnings.warn(message)
|
|
raise e
|
|
else:
|
|
raise
|
|
|
|
|
|
class _FunctionCall(TypedDict):
|
|
name: str
|
|
|
|
|
|
_BM = TypeVar("_BM", bound=BaseModel)
|
|
_DictOrPydanticClass = Union[Dict[str, Any], Type[_BM], Type]
|
|
_DictOrPydantic = Union[Dict, _BM]
|
|
|
|
|
|
class _AllReturnType(TypedDict):
|
|
raw: BaseMessage
|
|
parsed: Optional[_DictOrPydantic]
|
|
parsing_error: Optional[BaseException]
|
|
|
|
|
|
class BaseChatOpenAI(BaseChatModel):
|
|
client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
async_client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
root_client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
root_async_client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
model_name: str = Field(default="gpt-3.5-turbo", alias="model")
|
|
"""Model name to use."""
|
|
temperature: Optional[float] = None
|
|
"""What sampling temperature to use."""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
openai_api_key: Optional[SecretStr] = Field(
|
|
alias="api_key", default_factory=secret_from_env("OPENAI_API_KEY", default=None)
|
|
)
|
|
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
|
|
"""Base URL path for API requests, leave blank if not using a proxy or service
|
|
emulator."""
|
|
openai_organization: Optional[str] = Field(default=None, alias="organization")
|
|
"""Automatically inferred from env var `OPENAI_ORG_ID` if not provided."""
|
|
# to support explicit proxy for OpenAI
|
|
openai_proxy: Optional[str] = Field(
|
|
default_factory=from_env("OPENAI_PROXY", default=None)
|
|
)
|
|
request_timeout: Union[float, Tuple[float, float], Any, None] = Field(
|
|
default=None, alias="timeout"
|
|
)
|
|
"""Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or
|
|
None."""
|
|
max_retries: Optional[int] = None
|
|
"""Maximum number of retries to make when generating."""
|
|
presence_penalty: Optional[float] = None
|
|
"""Penalizes repeated tokens."""
|
|
frequency_penalty: Optional[float] = None
|
|
"""Penalizes repeated tokens according to frequency."""
|
|
seed: Optional[int] = None
|
|
"""Seed for generation"""
|
|
logprobs: Optional[bool] = None
|
|
"""Whether to return logprobs."""
|
|
top_logprobs: Optional[int] = None
|
|
"""Number of most likely tokens to return at each token position, each with
|
|
an associated log probability. `logprobs` must be set to true
|
|
if this parameter is used."""
|
|
logit_bias: Optional[Dict[int, int]] = None
|
|
"""Modify the likelihood of specified tokens appearing in the completion."""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
n: Optional[int] = None
|
|
"""Number of chat completions to generate for each prompt."""
|
|
top_p: Optional[float] = None
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
max_tokens: Optional[int] = Field(default=None)
|
|
"""Maximum number of tokens to generate."""
|
|
reasoning_effort: Optional[str] = None
|
|
"""Constrains effort on reasoning for reasoning models.
|
|
|
|
Reasoning models only, like OpenAI o1 and o3-mini.
|
|
|
|
Currently supported values are low, medium, and high. Reducing reasoning effort
|
|
can result in faster responses and fewer tokens used on reasoning in a response.
|
|
|
|
.. versionadded:: 0.2.14
|
|
"""
|
|
tiktoken_model_name: Optional[str] = None
|
|
"""The model name to pass to tiktoken when using this class.
|
|
Tiktoken is used to count the number of tokens in documents to constrain
|
|
them to be under a certain limit. By default, when set to None, this will
|
|
be the same as the embedding model name. However, there are some cases
|
|
where you may want to use this Embedding class with a model name not
|
|
supported by tiktoken. This can include when using Azure embeddings or
|
|
when using one of the many model providers that expose an OpenAI-like
|
|
API but with different models. In those cases, in order to avoid erroring
|
|
when tiktoken is called, you can specify a model name to use here."""
|
|
default_headers: Union[Mapping[str, str], None] = None
|
|
default_query: Union[Mapping[str, object], None] = None
|
|
# Configure a custom httpx client. See the
|
|
# [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
|
|
http_client: Union[Any, None] = Field(default=None, exclude=True)
|
|
"""Optional httpx.Client. Only used for sync invocations. Must specify
|
|
http_async_client as well if you'd like a custom client for async invocations.
|
|
"""
|
|
http_async_client: Union[Any, None] = Field(default=None, exclude=True)
|
|
"""Optional httpx.AsyncClient. Only used for async invocations. Must specify
|
|
http_client as well if you'd like a custom client for sync invocations."""
|
|
stop: Optional[Union[List[str], str]] = Field(default=None, alias="stop_sequences")
|
|
"""Default stop sequences."""
|
|
extra_body: Optional[Mapping[str, Any]] = None
|
|
"""Optional additional JSON properties to include in the request parameters when
|
|
making requests to OpenAI compatible APIs, such as vLLM."""
|
|
include_response_headers: bool = False
|
|
"""Whether to include response headers in the output message response_metadata."""
|
|
disabled_params: Optional[Dict[str, Any]] = Field(default=None)
|
|
"""Parameters of the OpenAI client or chat.completions endpoint that should be
|
|
disabled for the given model.
|
|
|
|
Should be specified as ``{"param": None | ['val1', 'val2']}`` where the key is the
|
|
parameter and the value is either None, meaning that parameter should never be
|
|
used, or it's a list of disabled values for the parameter.
|
|
|
|
For example, older models may not support the 'parallel_tool_calls' parameter at
|
|
all, in which case ``disabled_params={"parallel_tool_calls": None}`` can ben passed
|
|
in.
|
|
|
|
If a parameter is disabled then it will not be used by default in any methods, e.g.
|
|
in :meth:`~langchain_openai.chat_models.base.ChatOpenAI.with_structured_output`.
|
|
However this does not prevent a user from directly passed in the parameter during
|
|
invocation.
|
|
"""
|
|
|
|
model_config = ConfigDict(populate_by_name=True)
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def build_extra(cls, values: Dict[str, Any]) -> Any:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
values = _build_model_kwargs(values, all_required_field_names)
|
|
return values
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_temperature(cls, values: Dict[str, Any]) -> Any:
|
|
"""Currently o1 models only allow temperature=1."""
|
|
model = values.get("model_name") or values.get("model") or ""
|
|
if model.startswith("o1") and "temperature" not in values:
|
|
values["temperature"] = 1
|
|
return values
|
|
|
|
@model_validator(mode="after")
|
|
def validate_environment(self) -> Self:
|
|
"""Validate that api key and python package exists in environment."""
|
|
if self.n is not None and self.n < 1:
|
|
raise ValueError("n must be at least 1.")
|
|
elif self.n is not None and self.n > 1 and self.streaming:
|
|
raise ValueError("n must be 1 when streaming.")
|
|
|
|
# Check OPENAI_ORGANIZATION for backwards compatibility.
|
|
self.openai_organization = (
|
|
self.openai_organization
|
|
or os.getenv("OPENAI_ORG_ID")
|
|
or os.getenv("OPENAI_ORGANIZATION")
|
|
)
|
|
self.openai_api_base = self.openai_api_base or os.getenv("OPENAI_API_BASE")
|
|
client_params: dict = {
|
|
"api_key": (
|
|
self.openai_api_key.get_secret_value() if self.openai_api_key else None
|
|
),
|
|
"organization": self.openai_organization,
|
|
"base_url": self.openai_api_base,
|
|
"timeout": self.request_timeout,
|
|
"default_headers": self.default_headers,
|
|
"default_query": self.default_query,
|
|
}
|
|
if self.max_retries is not None:
|
|
client_params["max_retries"] = self.max_retries
|
|
|
|
if self.openai_proxy and (self.http_client or self.http_async_client):
|
|
openai_proxy = self.openai_proxy
|
|
http_client = self.http_client
|
|
http_async_client = self.http_async_client
|
|
raise ValueError(
|
|
"Cannot specify 'openai_proxy' if one of "
|
|
"'http_client'/'http_async_client' is already specified. Received:\n"
|
|
f"{openai_proxy=}\n{http_client=}\n{http_async_client=}"
|
|
)
|
|
if not self.client:
|
|
if self.openai_proxy and not self.http_client:
|
|
try:
|
|
import httpx
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import httpx python package. "
|
|
"Please install it with `pip install httpx`."
|
|
) from e
|
|
self.http_client = httpx.Client(
|
|
proxy=self.openai_proxy, verify=global_ssl_context
|
|
)
|
|
sync_specific = {"http_client": self.http_client}
|
|
self.root_client = openai.OpenAI(**client_params, **sync_specific) # type: ignore[arg-type]
|
|
self.client = self.root_client.chat.completions
|
|
if not self.async_client:
|
|
if self.openai_proxy and not self.http_async_client:
|
|
try:
|
|
import httpx
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import httpx python package. "
|
|
"Please install it with `pip install httpx`."
|
|
) from e
|
|
self.http_async_client = httpx.AsyncClient(
|
|
proxy=self.openai_proxy, verify=global_ssl_context
|
|
)
|
|
async_specific = {"http_client": self.http_async_client}
|
|
self.root_async_client = openai.AsyncOpenAI(
|
|
**client_params,
|
|
**async_specific, # type: ignore[arg-type]
|
|
)
|
|
self.async_client = self.root_async_client.chat.completions
|
|
return self
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
exclude_if_none = {
|
|
"presence_penalty": self.presence_penalty,
|
|
"frequency_penalty": self.frequency_penalty,
|
|
"seed": self.seed,
|
|
"top_p": self.top_p,
|
|
"logprobs": self.logprobs,
|
|
"top_logprobs": self.top_logprobs,
|
|
"logit_bias": self.logit_bias,
|
|
"stop": self.stop or None, # also exclude empty list for this
|
|
"max_tokens": self.max_tokens,
|
|
"extra_body": self.extra_body,
|
|
"n": self.n,
|
|
"temperature": self.temperature,
|
|
"reasoning_effort": self.reasoning_effort,
|
|
}
|
|
|
|
params = {
|
|
"model": self.model_name,
|
|
"stream": self.streaming,
|
|
**{k: v for k, v in exclude_if_none.items() if v is not None},
|
|
**self.model_kwargs,
|
|
}
|
|
|
|
return params
|
|
|
|
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
|
|
overall_token_usage: dict = {}
|
|
system_fingerprint = None
|
|
for output in llm_outputs:
|
|
if output is None:
|
|
# Happens in streaming
|
|
continue
|
|
token_usage = output["token_usage"]
|
|
if token_usage is not None:
|
|
for k, v in token_usage.items():
|
|
if v is None:
|
|
continue
|
|
if k in overall_token_usage:
|
|
overall_token_usage[k] = _update_token_usage(
|
|
overall_token_usage[k], v
|
|
)
|
|
else:
|
|
overall_token_usage[k] = v
|
|
if system_fingerprint is None:
|
|
system_fingerprint = output.get("system_fingerprint")
|
|
combined = {"token_usage": overall_token_usage, "model_name": self.model_name}
|
|
if system_fingerprint:
|
|
combined["system_fingerprint"] = system_fingerprint
|
|
return combined
|
|
|
|
def _convert_chunk_to_generation_chunk(
|
|
self,
|
|
chunk: dict,
|
|
default_chunk_class: Type,
|
|
base_generation_info: Optional[Dict],
|
|
) -> Optional[ChatGenerationChunk]:
|
|
if chunk.get("type") == "content.delta": # from beta.chat.completions.stream
|
|
return None
|
|
token_usage = chunk.get("usage")
|
|
choices = (
|
|
chunk.get("choices", [])
|
|
# from beta.chat.completions.stream
|
|
or chunk.get("chunk", {}).get("choices", [])
|
|
)
|
|
|
|
usage_metadata: Optional[UsageMetadata] = (
|
|
_create_usage_metadata(token_usage) if token_usage else None
|
|
)
|
|
if len(choices) == 0:
|
|
# logprobs is implicitly None
|
|
generation_chunk = ChatGenerationChunk(
|
|
message=default_chunk_class(content="", usage_metadata=usage_metadata)
|
|
)
|
|
return generation_chunk
|
|
|
|
choice = choices[0]
|
|
if choice["delta"] is None:
|
|
return None
|
|
|
|
message_chunk = _convert_delta_to_message_chunk(
|
|
choice["delta"], default_chunk_class
|
|
)
|
|
generation_info = {**base_generation_info} if base_generation_info else {}
|
|
|
|
if finish_reason := choice.get("finish_reason"):
|
|
generation_info["finish_reason"] = finish_reason
|
|
if model_name := chunk.get("model"):
|
|
generation_info["model_name"] = model_name
|
|
if system_fingerprint := chunk.get("system_fingerprint"):
|
|
generation_info["system_fingerprint"] = system_fingerprint
|
|
|
|
logprobs = choice.get("logprobs")
|
|
if logprobs:
|
|
generation_info["logprobs"] = logprobs
|
|
|
|
if usage_metadata and isinstance(message_chunk, AIMessageChunk):
|
|
message_chunk.usage_metadata = usage_metadata
|
|
|
|
generation_chunk = ChatGenerationChunk(
|
|
message=message_chunk, generation_info=generation_info or None
|
|
)
|
|
return generation_chunk
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
kwargs["stream"] = True
|
|
payload = self._get_request_payload(messages, stop=stop, **kwargs)
|
|
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
|
|
base_generation_info = {}
|
|
|
|
if "response_format" in payload:
|
|
if self.include_response_headers:
|
|
warnings.warn(
|
|
"Cannot currently include response headers when response_format is "
|
|
"specified."
|
|
)
|
|
payload.pop("stream")
|
|
response_stream = self.root_client.beta.chat.completions.stream(**payload)
|
|
context_manager = response_stream
|
|
else:
|
|
if self.include_response_headers:
|
|
raw_response = self.client.with_raw_response.create(**payload)
|
|
response = raw_response.parse()
|
|
base_generation_info = {"headers": dict(raw_response.headers)}
|
|
else:
|
|
response = self.client.create(**payload)
|
|
context_manager = response
|
|
try:
|
|
with context_manager as response:
|
|
is_first_chunk = True
|
|
for chunk in response:
|
|
if not isinstance(chunk, dict):
|
|
chunk = chunk.model_dump()
|
|
generation_chunk = self._convert_chunk_to_generation_chunk(
|
|
chunk,
|
|
default_chunk_class,
|
|
base_generation_info if is_first_chunk else {},
|
|
)
|
|
if generation_chunk is None:
|
|
continue
|
|
default_chunk_class = generation_chunk.message.__class__
|
|
logprobs = (generation_chunk.generation_info or {}).get("logprobs")
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(
|
|
generation_chunk.text,
|
|
chunk=generation_chunk,
|
|
logprobs=logprobs,
|
|
)
|
|
is_first_chunk = False
|
|
yield generation_chunk
|
|
except openai.BadRequestError as e:
|
|
_handle_openai_bad_request(e)
|
|
if hasattr(response, "get_final_completion") and "response_format" in payload:
|
|
final_completion = response.get_final_completion()
|
|
generation_chunk = self._get_generation_chunk_from_completion(
|
|
final_completion
|
|
)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(
|
|
generation_chunk.text, chunk=generation_chunk
|
|
)
|
|
yield generation_chunk
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if self.streaming:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
payload = self._get_request_payload(messages, stop=stop, **kwargs)
|
|
generation_info = None
|
|
if "response_format" in payload:
|
|
if self.include_response_headers:
|
|
warnings.warn(
|
|
"Cannot currently include response headers when response_format is "
|
|
"specified."
|
|
)
|
|
payload.pop("stream")
|
|
try:
|
|
response = self.root_client.beta.chat.completions.parse(**payload)
|
|
except openai.BadRequestError as e:
|
|
_handle_openai_bad_request(e)
|
|
elif self.include_response_headers:
|
|
raw_response = self.client.with_raw_response.create(**payload)
|
|
response = raw_response.parse()
|
|
generation_info = {"headers": dict(raw_response.headers)}
|
|
else:
|
|
response = self.client.create(**payload)
|
|
return self._create_chat_result(response, generation_info)
|
|
|
|
def _get_request_payload(
|
|
self,
|
|
input_: LanguageModelInput,
|
|
*,
|
|
stop: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> dict:
|
|
messages = self._convert_input(input_).to_messages()
|
|
if stop is not None:
|
|
kwargs["stop"] = stop
|
|
|
|
return {
|
|
"messages": [_convert_message_to_dict(m) for m in messages],
|
|
**self._default_params,
|
|
**kwargs,
|
|
}
|
|
|
|
def _create_chat_result(
|
|
self,
|
|
response: Union[dict, openai.BaseModel],
|
|
generation_info: Optional[Dict] = None,
|
|
) -> ChatResult:
|
|
generations = []
|
|
|
|
response_dict = (
|
|
response if isinstance(response, dict) else response.model_dump()
|
|
)
|
|
# Sometimes the AI Model calling will get error, we should raise it.
|
|
# Otherwise, the next code 'choices.extend(response["choices"])'
|
|
# will throw a "TypeError: 'NoneType' object is not iterable" error
|
|
# to mask the true error. Because 'response["choices"]' is None.
|
|
if response_dict.get("error"):
|
|
raise ValueError(response_dict.get("error"))
|
|
|
|
token_usage = response_dict.get("usage")
|
|
for res in response_dict["choices"]:
|
|
message = _convert_dict_to_message(res["message"])
|
|
if token_usage and isinstance(message, AIMessage):
|
|
message.usage_metadata = _create_usage_metadata(token_usage)
|
|
generation_info = generation_info or {}
|
|
generation_info["finish_reason"] = (
|
|
res.get("finish_reason")
|
|
if res.get("finish_reason") is not None
|
|
else generation_info.get("finish_reason")
|
|
)
|
|
if "logprobs" in res:
|
|
generation_info["logprobs"] = res["logprobs"]
|
|
gen = ChatGeneration(message=message, generation_info=generation_info)
|
|
generations.append(gen)
|
|
llm_output = {
|
|
"token_usage": token_usage,
|
|
"model_name": response_dict.get("model", self.model_name),
|
|
"system_fingerprint": response_dict.get("system_fingerprint", ""),
|
|
}
|
|
|
|
if isinstance(response, openai.BaseModel) and getattr(
|
|
response, "choices", None
|
|
):
|
|
message = response.choices[0].message # type: ignore[attr-defined]
|
|
if hasattr(message, "parsed"):
|
|
generations[0].message.additional_kwargs["parsed"] = message.parsed
|
|
if hasattr(message, "refusal"):
|
|
generations[0].message.additional_kwargs["refusal"] = message.refusal
|
|
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
kwargs["stream"] = True
|
|
payload = self._get_request_payload(messages, stop=stop, **kwargs)
|
|
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
|
|
base_generation_info = {}
|
|
|
|
if "response_format" in payload:
|
|
if self.include_response_headers:
|
|
warnings.warn(
|
|
"Cannot currently include response headers when response_format is "
|
|
"specified."
|
|
)
|
|
payload.pop("stream")
|
|
response_stream = self.root_async_client.beta.chat.completions.stream(
|
|
**payload
|
|
)
|
|
context_manager = response_stream
|
|
else:
|
|
if self.include_response_headers:
|
|
raw_response = await self.async_client.with_raw_response.create(
|
|
**payload
|
|
)
|
|
response = raw_response.parse()
|
|
base_generation_info = {"headers": dict(raw_response.headers)}
|
|
else:
|
|
response = await self.async_client.create(**payload)
|
|
context_manager = response
|
|
try:
|
|
async with context_manager as response:
|
|
is_first_chunk = True
|
|
async for chunk in response:
|
|
if not isinstance(chunk, dict):
|
|
chunk = chunk.model_dump()
|
|
generation_chunk = self._convert_chunk_to_generation_chunk(
|
|
chunk,
|
|
default_chunk_class,
|
|
base_generation_info if is_first_chunk else {},
|
|
)
|
|
if generation_chunk is None:
|
|
continue
|
|
default_chunk_class = generation_chunk.message.__class__
|
|
logprobs = (generation_chunk.generation_info or {}).get("logprobs")
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(
|
|
generation_chunk.text,
|
|
chunk=generation_chunk,
|
|
logprobs=logprobs,
|
|
)
|
|
is_first_chunk = False
|
|
yield generation_chunk
|
|
except openai.BadRequestError as e:
|
|
_handle_openai_bad_request(e)
|
|
if hasattr(response, "get_final_completion") and "response_format" in payload:
|
|
final_completion = await response.get_final_completion()
|
|
generation_chunk = self._get_generation_chunk_from_completion(
|
|
final_completion
|
|
)
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(
|
|
generation_chunk.text, chunk=generation_chunk
|
|
)
|
|
yield generation_chunk
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if self.streaming:
|
|
stream_iter = self._astream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return await agenerate_from_stream(stream_iter)
|
|
payload = self._get_request_payload(messages, stop=stop, **kwargs)
|
|
generation_info = None
|
|
if "response_format" in payload:
|
|
if self.include_response_headers:
|
|
warnings.warn(
|
|
"Cannot currently include response headers when response_format is "
|
|
"specified."
|
|
)
|
|
payload.pop("stream")
|
|
try:
|
|
response = await self.root_async_client.beta.chat.completions.parse(
|
|
**payload
|
|
)
|
|
except openai.BadRequestError as e:
|
|
_handle_openai_bad_request(e)
|
|
elif self.include_response_headers:
|
|
raw_response = await self.async_client.with_raw_response.create(**payload)
|
|
response = raw_response.parse()
|
|
generation_info = {"headers": dict(raw_response.headers)}
|
|
else:
|
|
response = await self.async_client.create(**payload)
|
|
return await run_in_executor(
|
|
None, self._create_chat_result, response, generation_info
|
|
)
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {"model_name": self.model_name, **self._default_params}
|
|
|
|
def _get_invocation_params(
|
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
|
) -> Dict[str, Any]:
|
|
"""Get the parameters used to invoke the model."""
|
|
return {
|
|
"model": self.model_name,
|
|
**super()._get_invocation_params(stop=stop),
|
|
**self._default_params,
|
|
**kwargs,
|
|
}
|
|
|
|
def _get_ls_params(
|
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
|
) -> LangSmithParams:
|
|
"""Get standard params for tracing."""
|
|
params = self._get_invocation_params(stop=stop, **kwargs)
|
|
ls_params = LangSmithParams(
|
|
ls_provider="openai",
|
|
ls_model_name=self.model_name,
|
|
ls_model_type="chat",
|
|
ls_temperature=params.get("temperature", self.temperature),
|
|
)
|
|
if ls_max_tokens := params.get("max_tokens", self.max_tokens) or params.get(
|
|
"max_completion_tokens", self.max_tokens
|
|
):
|
|
ls_params["ls_max_tokens"] = ls_max_tokens
|
|
if ls_stop := stop or params.get("stop", None):
|
|
ls_params["ls_stop"] = ls_stop
|
|
return ls_params
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "openai-chat"
|
|
|
|
def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]:
|
|
if self.tiktoken_model_name is not None:
|
|
model = self.tiktoken_model_name
|
|
else:
|
|
model = self.model_name
|
|
try:
|
|
encoding = tiktoken.encoding_for_model(model)
|
|
except KeyError:
|
|
model = "cl100k_base"
|
|
encoding = tiktoken.get_encoding(model)
|
|
return model, encoding
|
|
|
|
def get_token_ids(self, text: str) -> List[int]:
|
|
"""Get the tokens present in the text with tiktoken package."""
|
|
if self.custom_get_token_ids is not None:
|
|
return self.custom_get_token_ids(text)
|
|
# tiktoken NOT supported for Python 3.7 or below
|
|
if sys.version_info[1] <= 7:
|
|
return super().get_token_ids(text)
|
|
_, encoding_model = self._get_encoding_model()
|
|
return encoding_model.encode(text)
|
|
|
|
def get_num_tokens_from_messages(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
tools: Optional[
|
|
Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]]
|
|
] = None,
|
|
) -> int:
|
|
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
|
|
|
|
**Requirements**: You must have the ``pillow`` installed if you want to count
|
|
image tokens if you are specifying the image as a base64 string, and you must
|
|
have both ``pillow`` and ``httpx`` installed if you are specifying the image
|
|
as a URL. If these aren't installed image inputs will be ignored in token
|
|
counting.
|
|
|
|
OpenAI reference: https://github.com/openai/openai-cookbook/blob/
|
|
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
|
|
|
|
Args:
|
|
messages: The message inputs to tokenize.
|
|
tools: If provided, sequence of dict, BaseModel, function, or BaseTools
|
|
to be converted to tool schemas.
|
|
"""
|
|
# TODO: Count bound tools as part of input.
|
|
if tools is not None:
|
|
warnings.warn(
|
|
"Counting tokens in tool schemas is not yet supported. Ignoring tools."
|
|
)
|
|
if sys.version_info[1] <= 7:
|
|
return super().get_num_tokens_from_messages(messages)
|
|
model, encoding = self._get_encoding_model()
|
|
if model.startswith("gpt-3.5-turbo-0301"):
|
|
# every message follows <im_start>{role/name}\n{content}<im_end>\n
|
|
tokens_per_message = 4
|
|
# if there's a name, the role is omitted
|
|
tokens_per_name = -1
|
|
elif model.startswith("gpt-3.5-turbo") or model.startswith("gpt-4"):
|
|
tokens_per_message = 3
|
|
tokens_per_name = 1
|
|
else:
|
|
raise NotImplementedError(
|
|
f"get_num_tokens_from_messages() is not presently implemented "
|
|
f"for model {model}. See "
|
|
"https://platform.openai.com/docs/guides/text-generation/managing-tokens" # noqa: E501
|
|
" for information on how messages are converted to tokens."
|
|
)
|
|
num_tokens = 0
|
|
messages_dict = [_convert_message_to_dict(m) for m in messages]
|
|
for message in messages_dict:
|
|
num_tokens += tokens_per_message
|
|
for key, value in message.items():
|
|
# This is an inferred approximation. OpenAI does not document how to
|
|
# count tool message tokens.
|
|
if key == "tool_call_id":
|
|
num_tokens += 3
|
|
continue
|
|
if isinstance(value, list):
|
|
# content or tool calls
|
|
for val in value:
|
|
if isinstance(val, str) or val["type"] == "text":
|
|
text = val["text"] if isinstance(val, dict) else val
|
|
num_tokens += len(encoding.encode(text))
|
|
elif val["type"] == "image_url":
|
|
if val["image_url"].get("detail") == "low":
|
|
num_tokens += 85
|
|
else:
|
|
image_size = _url_to_size(val["image_url"]["url"])
|
|
if not image_size:
|
|
continue
|
|
num_tokens += _count_image_tokens(*image_size)
|
|
# Tool/function call token counting is not documented by OpenAI.
|
|
# This is an approximation.
|
|
elif val["type"] == "function":
|
|
num_tokens += len(
|
|
encoding.encode(val["function"]["arguments"])
|
|
)
|
|
num_tokens += len(encoding.encode(val["function"]["name"]))
|
|
else:
|
|
raise ValueError(
|
|
f"Unrecognized content block type\n\n{val}"
|
|
)
|
|
elif not value:
|
|
continue
|
|
else:
|
|
# Cast str(value) in case the message value is not a string
|
|
# This occurs with function messages
|
|
num_tokens += len(encoding.encode(str(value)))
|
|
if key == "name":
|
|
num_tokens += tokens_per_name
|
|
# every reply is primed with <im_start>assistant
|
|
num_tokens += 3
|
|
return num_tokens
|
|
|
|
@deprecated(
|
|
since="0.2.1",
|
|
alternative="langchain_openai.chat_models.base.ChatOpenAI.bind_tools",
|
|
removal="1.0.0",
|
|
)
|
|
def bind_functions(
|
|
self,
|
|
functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
function_call: Optional[
|
|
Union[_FunctionCall, str, Literal["auto", "none"]]
|
|
] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind functions (and other objects) to this chat model.
|
|
|
|
Assumes model is compatible with OpenAI function-calling API.
|
|
|
|
NOTE: Using bind_tools is recommended instead, as the `functions` and
|
|
`function_call` request parameters are officially marked as deprecated by
|
|
OpenAI.
|
|
|
|
Args:
|
|
functions: A list of function definitions to bind to this chat model.
|
|
Can be a dictionary, pydantic model, or callable. Pydantic
|
|
models and callables will be automatically converted to
|
|
their schema dictionary representation.
|
|
function_call: Which function to require the model to call.
|
|
Must be the name of the single provided function or
|
|
"auto" to automatically determine which function to call
|
|
(if any).
|
|
**kwargs: Any additional parameters to pass to the
|
|
:class:`~langchain.runnable.Runnable` constructor.
|
|
"""
|
|
|
|
formatted_functions = [convert_to_openai_function(fn) for fn in functions]
|
|
if function_call is not None:
|
|
function_call = (
|
|
{"name": function_call}
|
|
if isinstance(function_call, str)
|
|
and function_call not in ("auto", "none")
|
|
else function_call
|
|
)
|
|
if isinstance(function_call, dict) and len(formatted_functions) != 1:
|
|
raise ValueError(
|
|
"When specifying `function_call`, you must provide exactly one "
|
|
"function."
|
|
)
|
|
if (
|
|
isinstance(function_call, dict)
|
|
and formatted_functions[0]["name"] != function_call["name"]
|
|
):
|
|
raise ValueError(
|
|
f"Function call {function_call} was specified, but the only "
|
|
f"provided function was {formatted_functions[0]['name']}."
|
|
)
|
|
kwargs = {**kwargs, "function_call": function_call}
|
|
return super().bind(functions=formatted_functions, **kwargs)
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]],
|
|
*,
|
|
tool_choice: Optional[
|
|
Union[dict, str, Literal["auto", "none", "required", "any"], bool]
|
|
] = None,
|
|
strict: Optional[bool] = None,
|
|
parallel_tool_calls: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind tool-like objects to this chat model.
|
|
|
|
Assumes model is compatible with OpenAI tool-calling API.
|
|
|
|
Args:
|
|
tools: A list of tool definitions to bind to this chat model.
|
|
Supports any tool definition handled by
|
|
:meth:`langchain_core.utils.function_calling.convert_to_openai_tool`.
|
|
tool_choice: Which tool to require the model to call. Options are:
|
|
|
|
- str of the form ``"<<tool_name>>"``: calls <<tool_name>> tool.
|
|
- ``"auto"``: automatically selects a tool (including no tool).
|
|
- ``"none"``: does not call a tool.
|
|
- ``"any"`` or ``"required"`` or ``True``: force at least one tool to be called.
|
|
- dict of the form ``{"type": "function", "function": {"name": <<tool_name>>}}``: calls <<tool_name>> tool.
|
|
- ``False`` or ``None``: no effect, default OpenAI behavior.
|
|
strict: If True, model output is guaranteed to exactly match the JSON Schema
|
|
provided in the tool definition. If True, the input schema will be
|
|
validated according to
|
|
https://platform.openai.com/docs/guides/structured-outputs/supported-schemas.
|
|
If False, input schema will not be validated and model output will not
|
|
be validated.
|
|
If None, ``strict`` argument will not be passed to the model.
|
|
parallel_tool_calls: Set to ``False`` to disable parallel tool use.
|
|
Defaults to ``None`` (no specification, which allows parallel tool use).
|
|
kwargs: Any additional parameters are passed directly to
|
|
:meth:`~langchain_openai.chat_models.base.ChatOpenAI.bind`.
|
|
|
|
.. versionchanged:: 0.1.21
|
|
|
|
Support for ``strict`` argument added.
|
|
|
|
""" # noqa: E501
|
|
|
|
if parallel_tool_calls is not None:
|
|
kwargs["parallel_tool_calls"] = parallel_tool_calls
|
|
formatted_tools = [
|
|
convert_to_openai_tool(tool, strict=strict) for tool in tools
|
|
]
|
|
if tool_choice:
|
|
if isinstance(tool_choice, str):
|
|
# tool_choice is a tool/function name
|
|
if tool_choice not in ("auto", "none", "any", "required"):
|
|
tool_choice = {
|
|
"type": "function",
|
|
"function": {"name": tool_choice},
|
|
}
|
|
# 'any' is not natively supported by OpenAI API.
|
|
# We support 'any' since other models use this instead of 'required'.
|
|
if tool_choice == "any":
|
|
tool_choice = "required"
|
|
elif isinstance(tool_choice, bool):
|
|
tool_choice = "required"
|
|
elif isinstance(tool_choice, dict):
|
|
tool_names = [
|
|
formatted_tool["function"]["name"]
|
|
for formatted_tool in formatted_tools
|
|
]
|
|
if not any(
|
|
tool_name == tool_choice["function"]["name"]
|
|
for tool_name in tool_names
|
|
):
|
|
raise ValueError(
|
|
f"Tool choice {tool_choice} was specified, but the only "
|
|
f"provided tools were {tool_names}."
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unrecognized tool_choice type. Expected str, bool or dict. "
|
|
f"Received: {tool_choice}"
|
|
)
|
|
kwargs["tool_choice"] = tool_choice
|
|
return super().bind(tools=formatted_tools, **kwargs)
|
|
|
|
def with_structured_output(
|
|
self,
|
|
schema: Optional[_DictOrPydanticClass] = None,
|
|
*,
|
|
method: Literal[
|
|
"function_calling", "json_mode", "json_schema"
|
|
] = "function_calling",
|
|
include_raw: bool = False,
|
|
strict: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, _DictOrPydantic]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema:
|
|
The output schema. Can be passed in as:
|
|
|
|
- an OpenAI function/tool schema,
|
|
- a JSON Schema,
|
|
- a TypedDict class (support added in 0.1.20),
|
|
- or a Pydantic class.
|
|
|
|
If ``schema`` is a Pydantic class then the model output will be a
|
|
Pydantic instance of that class, and the model-generated fields will be
|
|
validated by the Pydantic class. Otherwise the model output will be a
|
|
dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
|
|
for more on how to properly specify types and descriptions of
|
|
schema fields when specifying a Pydantic or TypedDict class.
|
|
|
|
method: The method for steering model generation, one of:
|
|
|
|
- "function_calling":
|
|
Uses OpenAI's tool-calling (formerly called function calling)
|
|
API: https://platform.openai.com/docs/guides/function-calling
|
|
- "json_schema":
|
|
Uses OpenAI's Structured Output API: https://platform.openai.com/docs/guides/structured-outputs
|
|
Supported for "gpt-4o-mini", "gpt-4o-2024-08-06", "o1", and later
|
|
models.
|
|
- "json_mode":
|
|
Uses OpenAI's JSON mode. Note that if using JSON mode then you
|
|
must include instructions for formatting the output into the
|
|
desired schema into the model call:
|
|
https://platform.openai.com/docs/guides/structured-outputs/json-mode
|
|
|
|
Learn more about the differences between the methods and which models
|
|
support which methods here:
|
|
|
|
- https://platform.openai.com/docs/guides/structured-outputs/structured-outputs-vs-json-mode
|
|
- https://platform.openai.com/docs/guides/structured-outputs/function-calling-vs-response-format
|
|
|
|
include_raw:
|
|
If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
strict:
|
|
|
|
- True:
|
|
Model output is guaranteed to exactly match the schema.
|
|
The input schema will also be validated according to
|
|
https://platform.openai.com/docs/guides/structured-outputs/supported-schemas
|
|
- False:
|
|
Input schema will not be validated and model output will not be
|
|
validated.
|
|
- None:
|
|
``strict`` argument will not be passed to the model.
|
|
|
|
kwargs: Additional keyword args aren't supported.
|
|
|
|
Returns:
|
|
A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
|
|
|
|
| If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs an instance of ``schema`` (i.e., a Pydantic object). Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
|
|
|
|
| If ``include_raw`` is True, then Runnable outputs a dict with keys:
|
|
|
|
- "raw": BaseMessage
|
|
- "parsed": None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
|
|
- "parsing_error": Optional[BaseException]
|
|
|
|
.. versionchanged:: 0.1.20
|
|
|
|
Added support for TypedDict class ``schema``.
|
|
|
|
.. versionchanged:: 0.1.21
|
|
|
|
Support for ``strict`` argument added.
|
|
Support for ``method`` = "json_schema" added.
|
|
""" # noqa: E501
|
|
if kwargs:
|
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
|
if strict is not None and method == "json_mode":
|
|
raise ValueError(
|
|
"Argument `strict` is not supported with `method`='json_mode'"
|
|
)
|
|
is_pydantic_schema = _is_pydantic_class(schema)
|
|
|
|
if method == "json_schema":
|
|
# Check for Pydantic BaseModel V1
|
|
if (
|
|
is_pydantic_schema and issubclass(schema, BaseModelV1) # type: ignore[arg-type]
|
|
):
|
|
warnings.warn(
|
|
"Received a Pydantic BaseModel V1 schema. This is not supported by "
|
|
'method="json_schema". Please use method="function_calling" '
|
|
"or specify schema via JSON Schema or Pydantic V2 BaseModel. "
|
|
'Overriding to method="function_calling".'
|
|
)
|
|
method = "function_calling"
|
|
# Check for incompatible model
|
|
if self.model_name and (
|
|
self.model_name.startswith("gpt-3")
|
|
or self.model_name.startswith("gpt-4-")
|
|
or self.model_name == "gpt-4"
|
|
):
|
|
warnings.warn(
|
|
f"Cannot use method='json_schema' with model {self.model_name} "
|
|
f"since it doesn't support OpenAI's Structured Output API. You can "
|
|
f"see supported models here: "
|
|
f"https://platform.openai.com/docs/guides/structured-outputs#supported-models. " # noqa: E501
|
|
"To fix this warning, set `method='function_calling'. "
|
|
"Overriding to method='function_calling'."
|
|
)
|
|
method = "function_calling"
|
|
|
|
if method == "function_calling":
|
|
if schema is None:
|
|
raise ValueError(
|
|
"schema must be specified when method is not 'json_mode'. "
|
|
"Received None."
|
|
)
|
|
tool_name = convert_to_openai_tool(schema)["function"]["name"]
|
|
bind_kwargs = self._filter_disabled_params(
|
|
tool_choice=tool_name,
|
|
parallel_tool_calls=False,
|
|
strict=strict,
|
|
structured_output_format={
|
|
"kwargs": {"method": method},
|
|
"schema": _convert_to_json_schema(schema, strict=strict),
|
|
},
|
|
)
|
|
|
|
llm = self.bind_tools([schema], **bind_kwargs)
|
|
if is_pydantic_schema:
|
|
output_parser: Runnable = PydanticToolsParser(
|
|
tools=[schema], # type: ignore[list-item]
|
|
first_tool_only=True, # type: ignore[list-item]
|
|
)
|
|
else:
|
|
output_parser = JsonOutputKeyToolsParser(
|
|
key_name=tool_name, first_tool_only=True
|
|
)
|
|
elif method == "json_mode":
|
|
llm = self.bind(
|
|
response_format={"type": "json_object"},
|
|
structured_output_format={
|
|
"kwargs": {"method": method},
|
|
"schema": _convert_to_json_schema(schema, strict=strict)
|
|
if schema
|
|
else None,
|
|
},
|
|
)
|
|
output_parser = (
|
|
PydanticOutputParser(pydantic_object=schema) # type: ignore[arg-type]
|
|
if is_pydantic_schema
|
|
else JsonOutputParser()
|
|
)
|
|
elif method == "json_schema":
|
|
if schema is None:
|
|
raise ValueError(
|
|
"schema must be specified when method is not 'json_mode'. "
|
|
"Received None."
|
|
)
|
|
response_format = _convert_to_openai_response_format(schema, strict=strict)
|
|
llm = self.bind(
|
|
response_format=response_format,
|
|
structured_output_format={
|
|
"kwargs": {"method": method},
|
|
"schema": _convert_to_json_schema(schema, strict=strict),
|
|
},
|
|
)
|
|
if is_pydantic_schema:
|
|
output_parser = RunnableLambda(
|
|
partial(_oai_structured_outputs_parser, schema=cast(type, schema))
|
|
).with_types(output_type=cast(type, schema))
|
|
else:
|
|
output_parser = JsonOutputParser()
|
|
else:
|
|
raise ValueError(
|
|
f"Unrecognized method argument. Expected one of 'function_calling' or "
|
|
f"'json_mode'. Received: '{method}'"
|
|
)
|
|
|
|
if include_raw:
|
|
parser_assign = RunnablePassthrough.assign(
|
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
|
)
|
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
|
parser_with_fallback = parser_assign.with_fallbacks(
|
|
[parser_none], exception_key="parsing_error"
|
|
)
|
|
return RunnableMap(raw=llm) | parser_with_fallback
|
|
else:
|
|
return llm | output_parser
|
|
|
|
def _filter_disabled_params(self, **kwargs: Any) -> Dict[str, Any]:
|
|
if not self.disabled_params:
|
|
return kwargs
|
|
filtered = {}
|
|
for k, v in kwargs.items():
|
|
# Skip param
|
|
if k in self.disabled_params and (
|
|
self.disabled_params[k] is None or v in self.disabled_params[k]
|
|
):
|
|
continue
|
|
# Keep param
|
|
else:
|
|
filtered[k] = v
|
|
return filtered
|
|
|
|
def _get_generation_chunk_from_completion(
|
|
self, completion: openai.BaseModel
|
|
) -> ChatGenerationChunk:
|
|
"""Get chunk from completion (e.g., from final completion of a stream)."""
|
|
chat_result = self._create_chat_result(completion)
|
|
chat_message = chat_result.generations[0].message
|
|
if isinstance(chat_message, AIMessage):
|
|
usage_metadata = chat_message.usage_metadata
|
|
# Skip tool_calls, already sent as chunks
|
|
if "tool_calls" in chat_message.additional_kwargs:
|
|
chat_message.additional_kwargs.pop("tool_calls")
|
|
else:
|
|
usage_metadata = None
|
|
message = AIMessageChunk(
|
|
content="",
|
|
additional_kwargs=chat_message.additional_kwargs,
|
|
usage_metadata=usage_metadata,
|
|
)
|
|
return ChatGenerationChunk(
|
|
message=message, generation_info=chat_result.llm_output
|
|
)
|
|
|
|
|
|
class ChatOpenAI(BaseChatOpenAI): # type: ignore[override]
|
|
"""OpenAI chat model integration.
|
|
|
|
.. dropdown:: Setup
|
|
:open:
|
|
|
|
Install ``langchain-openai`` and set environment variable ``OPENAI_API_KEY``.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-openai
|
|
export OPENAI_API_KEY="your-api-key"
|
|
|
|
.. dropdown:: Key init args — completion params
|
|
|
|
model: str
|
|
Name of OpenAI model to use.
|
|
temperature: float
|
|
Sampling temperature.
|
|
max_tokens: Optional[int]
|
|
Max number of tokens to generate.
|
|
logprobs: Optional[bool]
|
|
Whether to return logprobs.
|
|
stream_options: Dict
|
|
Configure streaming outputs, like whether to return token usage when
|
|
streaming (``{"include_usage": True}``).
|
|
|
|
See full list of supported init args and their descriptions in the params section.
|
|
|
|
.. dropdown:: Key init args — client params
|
|
|
|
timeout: Union[float, Tuple[float, float], Any, None]
|
|
Timeout for requests.
|
|
max_retries: Optional[int]
|
|
Max number of retries.
|
|
api_key: Optional[str]
|
|
OpenAI API key. If not passed in will be read from env var OPENAI_API_KEY.
|
|
base_url: Optional[str]
|
|
Base URL for API requests. Only specify if using a proxy or service
|
|
emulator.
|
|
organization: Optional[str]
|
|
OpenAI organization ID. If not passed in will be read from env
|
|
var OPENAI_ORG_ID.
|
|
|
|
See full list of supported init args and their descriptions in the params section.
|
|
|
|
.. dropdown:: Instantiate
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
|
|
llm = ChatOpenAI(
|
|
model="gpt-4o",
|
|
temperature=0,
|
|
max_tokens=None,
|
|
timeout=None,
|
|
max_retries=2,
|
|
# api_key="...",
|
|
# base_url="...",
|
|
# organization="...",
|
|
# other params...
|
|
)
|
|
|
|
**NOTE**: Any param which is not explicitly supported will be passed directly to the
|
|
``openai.OpenAI.chat.completions.create(...)`` API every time to the model is
|
|
invoked. For example:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
import openai
|
|
|
|
ChatOpenAI(..., frequency_penalty=0.2).invoke(...)
|
|
|
|
# results in underlying API call of:
|
|
|
|
openai.OpenAI(..).chat.completions.create(..., frequency_penalty=0.2)
|
|
|
|
# which is also equivalent to:
|
|
|
|
ChatOpenAI(...).invoke(..., frequency_penalty=0.2)
|
|
|
|
.. dropdown:: Invoke
|
|
|
|
.. code-block:: python
|
|
|
|
messages = [
|
|
(
|
|
"system",
|
|
"You are a helpful translator. Translate the user sentence to French.",
|
|
),
|
|
("human", "I love programming."),
|
|
]
|
|
llm.invoke(messages)
|
|
|
|
.. code-block:: pycon
|
|
|
|
AIMessage(
|
|
content="J'adore la programmation.",
|
|
response_metadata={
|
|
"token_usage": {
|
|
"completion_tokens": 5,
|
|
"prompt_tokens": 31,
|
|
"total_tokens": 36,
|
|
},
|
|
"model_name": "gpt-4o",
|
|
"system_fingerprint": "fp_43dfabdef1",
|
|
"finish_reason": "stop",
|
|
"logprobs": None,
|
|
},
|
|
id="run-012cffe2-5d3d-424d-83b5-51c6d4a593d1-0",
|
|
usage_metadata={"input_tokens": 31, "output_tokens": 5, "total_tokens": 36},
|
|
)
|
|
|
|
.. dropdown:: Stream
|
|
|
|
.. code-block:: python
|
|
|
|
for chunk in llm.stream(messages):
|
|
print(chunk.text(), end="")
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessageChunk(content="", id="run-9e1517e3-12bf-48f2-bb1b-2e824f7cd7b0")
|
|
AIMessageChunk(content="J", id="run-9e1517e3-12bf-48f2-bb1b-2e824f7cd7b0")
|
|
AIMessageChunk(content="'adore", id="run-9e1517e3-12bf-48f2-bb1b-2e824f7cd7b0")
|
|
AIMessageChunk(content=" la", id="run-9e1517e3-12bf-48f2-bb1b-2e824f7cd7b0")
|
|
AIMessageChunk(
|
|
content=" programmation", id="run-9e1517e3-12bf-48f2-bb1b-2e824f7cd7b0"
|
|
)
|
|
AIMessageChunk(content=".", id="run-9e1517e3-12bf-48f2-bb1b-2e824f7cd7b0")
|
|
AIMessageChunk(
|
|
content="",
|
|
response_metadata={"finish_reason": "stop"},
|
|
id="run-9e1517e3-12bf-48f2-bb1b-2e824f7cd7b0",
|
|
)
|
|
|
|
.. code-block:: python
|
|
|
|
stream = llm.stream(messages)
|
|
full = next(stream)
|
|
for chunk in stream:
|
|
full += chunk
|
|
full
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessageChunk(
|
|
content="J'adore la programmation.",
|
|
response_metadata={"finish_reason": "stop"},
|
|
id="run-bf917526-7f58-4683-84f7-36a6b671d140",
|
|
)
|
|
|
|
.. dropdown:: Async
|
|
|
|
.. code-block:: python
|
|
|
|
await llm.ainvoke(messages)
|
|
|
|
# stream:
|
|
# async for chunk in (await llm.astream(messages))
|
|
|
|
# batch:
|
|
# await llm.abatch([messages])
|
|
|
|
.. code-block:: python
|
|
|
|
AIMessage(
|
|
content="J'adore la programmation.",
|
|
response_metadata={
|
|
"token_usage": {
|
|
"completion_tokens": 5,
|
|
"prompt_tokens": 31,
|
|
"total_tokens": 36,
|
|
},
|
|
"model_name": "gpt-4o",
|
|
"system_fingerprint": "fp_43dfabdef1",
|
|
"finish_reason": "stop",
|
|
"logprobs": None,
|
|
},
|
|
id="run-012cffe2-5d3d-424d-83b5-51c6d4a593d1-0",
|
|
usage_metadata={"input_tokens": 31, "output_tokens": 5, "total_tokens": 36},
|
|
)
|
|
|
|
.. dropdown:: Tool calling
|
|
|
|
.. code-block:: python
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class GetWeather(BaseModel):
|
|
'''Get the current weather in a given location'''
|
|
|
|
location: str = Field(
|
|
..., description="The city and state, e.g. San Francisco, CA"
|
|
)
|
|
|
|
|
|
class GetPopulation(BaseModel):
|
|
'''Get the current population in a given location'''
|
|
|
|
location: str = Field(
|
|
..., description="The city and state, e.g. San Francisco, CA"
|
|
)
|
|
|
|
|
|
llm_with_tools = llm.bind_tools(
|
|
[GetWeather, GetPopulation]
|
|
# strict = True # enforce tool args schema is respected
|
|
)
|
|
ai_msg = llm_with_tools.invoke(
|
|
"Which city is hotter today and which is bigger: LA or NY?"
|
|
)
|
|
ai_msg.tool_calls
|
|
|
|
.. code-block:: python
|
|
|
|
[
|
|
{
|
|
"name": "GetWeather",
|
|
"args": {"location": "Los Angeles, CA"},
|
|
"id": "call_6XswGD5Pqk8Tt5atYr7tfenU",
|
|
},
|
|
{
|
|
"name": "GetWeather",
|
|
"args": {"location": "New York, NY"},
|
|
"id": "call_ZVL15vA8Y7kXqOy3dtmQgeCi",
|
|
},
|
|
{
|
|
"name": "GetPopulation",
|
|
"args": {"location": "Los Angeles, CA"},
|
|
"id": "call_49CFW8zqC9W7mh7hbMLSIrXw",
|
|
},
|
|
{
|
|
"name": "GetPopulation",
|
|
"args": {"location": "New York, NY"},
|
|
"id": "call_6ghfKxV264jEfe1mRIkS3PE7",
|
|
},
|
|
]
|
|
|
|
Note that ``openai >= 1.32`` supports a ``parallel_tool_calls`` parameter
|
|
that defaults to ``True``. This parameter can be set to ``False`` to
|
|
disable parallel tool calls:
|
|
|
|
.. code-block:: python
|
|
|
|
ai_msg = llm_with_tools.invoke(
|
|
"What is the weather in LA and NY?", parallel_tool_calls=False
|
|
)
|
|
ai_msg.tool_calls
|
|
|
|
.. code-block:: python
|
|
|
|
[
|
|
{
|
|
"name": "GetWeather",
|
|
"args": {"location": "Los Angeles, CA"},
|
|
"id": "call_4OoY0ZR99iEvC7fevsH8Uhtz",
|
|
}
|
|
]
|
|
|
|
Like other runtime parameters, ``parallel_tool_calls`` can be bound to a model
|
|
using ``llm.bind(parallel_tool_calls=False)`` or during instantiation by
|
|
setting ``model_kwargs``.
|
|
|
|
See ``ChatOpenAI.bind_tools()`` method for more.
|
|
|
|
.. dropdown:: Structured output
|
|
|
|
.. code-block:: python
|
|
|
|
from typing import Optional
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class Joke(BaseModel):
|
|
'''Joke to tell user.'''
|
|
|
|
setup: str = Field(description="The setup of the joke")
|
|
punchline: str = Field(description="The punchline to the joke")
|
|
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
|
|
|
|
|
|
structured_llm = llm.with_structured_output(Joke)
|
|
structured_llm.invoke("Tell me a joke about cats")
|
|
|
|
.. code-block:: python
|
|
|
|
Joke(
|
|
setup="Why was the cat sitting on the computer?",
|
|
punchline="To keep an eye on the mouse!",
|
|
rating=None,
|
|
)
|
|
|
|
See ``ChatOpenAI.with_structured_output()`` for more.
|
|
|
|
.. dropdown:: JSON mode
|
|
|
|
.. code-block:: python
|
|
|
|
json_llm = llm.bind(response_format={"type": "json_object"})
|
|
ai_msg = json_llm.invoke(
|
|
"Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]"
|
|
)
|
|
ai_msg.content
|
|
|
|
.. code-block:: python
|
|
|
|
'\\n{\\n "random_ints": [23, 87, 45, 12, 78, 34, 56, 90, 11, 67]\\n}'
|
|
|
|
.. dropdown:: Image input
|
|
|
|
.. code-block:: python
|
|
|
|
import base64
|
|
import httpx
|
|
from langchain_core.messages import HumanMessage
|
|
|
|
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
|
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
|
|
message = HumanMessage(
|
|
content=[
|
|
{"type": "text", "text": "describe the weather in this image"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
|
},
|
|
]
|
|
)
|
|
ai_msg = llm.invoke([message])
|
|
ai_msg.content
|
|
|
|
.. code-block:: python
|
|
|
|
"The weather in the image appears to be clear and pleasant. The sky is mostly blue with scattered, light clouds, suggesting a sunny day with minimal cloud cover. There is no indication of rain or strong winds, and the overall scene looks bright and calm. The lush green grass and clear visibility further indicate good weather conditions."
|
|
|
|
.. dropdown:: Token usage
|
|
|
|
.. code-block:: python
|
|
|
|
ai_msg = llm.invoke(messages)
|
|
ai_msg.usage_metadata
|
|
|
|
.. code-block:: python
|
|
|
|
{"input_tokens": 28, "output_tokens": 5, "total_tokens": 33}
|
|
|
|
When streaming, set the ``stream_usage`` kwarg:
|
|
|
|
.. code-block:: python
|
|
|
|
stream = llm.stream(messages, stream_usage=True)
|
|
full = next(stream)
|
|
for chunk in stream:
|
|
full += chunk
|
|
full.usage_metadata
|
|
|
|
.. code-block:: python
|
|
|
|
{"input_tokens": 28, "output_tokens": 5, "total_tokens": 33}
|
|
|
|
Alternatively, setting ``stream_usage`` when instantiating the model can be
|
|
useful when incorporating ``ChatOpenAI`` into LCEL chains-- or when using
|
|
methods like ``.with_structured_output``, which generate chains under the
|
|
hood.
|
|
|
|
.. code-block:: python
|
|
|
|
llm = ChatOpenAI(model="gpt-4o", stream_usage=True)
|
|
structured_llm = llm.with_structured_output(...)
|
|
|
|
.. dropdown:: Logprobs
|
|
|
|
.. code-block:: python
|
|
|
|
logprobs_llm = llm.bind(logprobs=True)
|
|
ai_msg = logprobs_llm.invoke(messages)
|
|
ai_msg.response_metadata["logprobs"]
|
|
|
|
.. code-block:: python
|
|
|
|
{
|
|
"content": [
|
|
{
|
|
"token": "J",
|
|
"bytes": [74],
|
|
"logprob": -4.9617593e-06,
|
|
"top_logprobs": [],
|
|
},
|
|
{
|
|
"token": "'adore",
|
|
"bytes": [39, 97, 100, 111, 114, 101],
|
|
"logprob": -0.25202933,
|
|
"top_logprobs": [],
|
|
},
|
|
{
|
|
"token": " la",
|
|
"bytes": [32, 108, 97],
|
|
"logprob": -0.20141791,
|
|
"top_logprobs": [],
|
|
},
|
|
{
|
|
"token": " programmation",
|
|
"bytes": [
|
|
32,
|
|
112,
|
|
114,
|
|
111,
|
|
103,
|
|
114,
|
|
97,
|
|
109,
|
|
109,
|
|
97,
|
|
116,
|
|
105,
|
|
111,
|
|
110,
|
|
],
|
|
"logprob": -1.9361265e-07,
|
|
"top_logprobs": [],
|
|
},
|
|
{
|
|
"token": ".",
|
|
"bytes": [46],
|
|
"logprob": -1.2233183e-05,
|
|
"top_logprobs": [],
|
|
},
|
|
]
|
|
}
|
|
|
|
.. dropdown:: Response metadata
|
|
|
|
.. code-block:: python
|
|
|
|
ai_msg = llm.invoke(messages)
|
|
ai_msg.response_metadata
|
|
|
|
.. code-block:: python
|
|
|
|
{
|
|
"token_usage": {
|
|
"completion_tokens": 5,
|
|
"prompt_tokens": 28,
|
|
"total_tokens": 33,
|
|
},
|
|
"model_name": "gpt-4o",
|
|
"system_fingerprint": "fp_319be4768e",
|
|
"finish_reason": "stop",
|
|
"logprobs": None,
|
|
}
|
|
|
|
""" # noqa: E501
|
|
|
|
stream_usage: bool = False
|
|
"""Whether to include usage metadata in streaming output. If True, additional
|
|
message chunks will be generated during the stream including usage metadata.
|
|
"""
|
|
|
|
max_tokens: Optional[int] = Field(default=None, alias="max_completion_tokens")
|
|
"""Maximum number of tokens to generate."""
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"openai_api_key": "OPENAI_API_KEY"}
|
|
|
|
@classmethod
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
"""Get the namespace of the langchain object."""
|
|
return ["langchain", "chat_models", "openai"]
|
|
|
|
@property
|
|
def lc_attributes(self) -> Dict[str, Any]:
|
|
attributes: Dict[str, Any] = {}
|
|
|
|
if self.openai_organization:
|
|
attributes["openai_organization"] = self.openai_organization
|
|
|
|
if self.openai_api_base:
|
|
attributes["openai_api_base"] = self.openai_api_base
|
|
|
|
if self.openai_proxy:
|
|
attributes["openai_proxy"] = self.openai_proxy
|
|
|
|
return attributes
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
"""Return whether this model can be serialized by Langchain."""
|
|
return True
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling OpenAI API."""
|
|
params = super()._default_params
|
|
if "max_tokens" in params:
|
|
params["max_completion_tokens"] = params.pop("max_tokens")
|
|
|
|
return params
|
|
|
|
def _get_request_payload(
|
|
self,
|
|
input_: LanguageModelInput,
|
|
*,
|
|
stop: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> dict:
|
|
payload = super()._get_request_payload(input_, stop=stop, **kwargs)
|
|
# max_tokens was deprecated in favor of max_completion_tokens
|
|
# in September 2024 release
|
|
if "max_tokens" in payload:
|
|
payload["max_completion_tokens"] = payload.pop("max_tokens")
|
|
|
|
# Mutate system message role to "developer" for o-series models
|
|
if self.model_name and re.match(r"^o\d", self.model_name):
|
|
for message in payload.get("messages", []):
|
|
if message["role"] == "system":
|
|
message["role"] = "developer"
|
|
return payload
|
|
|
|
def _should_stream_usage(
|
|
self, stream_usage: Optional[bool] = None, **kwargs: Any
|
|
) -> bool:
|
|
"""Determine whether to include usage metadata in streaming output.
|
|
|
|
For backwards compatibility, we check for `stream_options` passed
|
|
explicitly to kwargs or in the model_kwargs and override self.stream_usage.
|
|
"""
|
|
stream_usage_sources = [ # order of preference
|
|
stream_usage,
|
|
kwargs.get("stream_options", {}).get("include_usage"),
|
|
self.model_kwargs.get("stream_options", {}).get("include_usage"),
|
|
self.stream_usage,
|
|
]
|
|
for source in stream_usage_sources:
|
|
if isinstance(source, bool):
|
|
return source
|
|
return self.stream_usage
|
|
|
|
def _stream(
|
|
self, *args: Any, stream_usage: Optional[bool] = None, **kwargs: Any
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
"""Set default stream_options."""
|
|
stream_usage = self._should_stream_usage(stream_usage, **kwargs)
|
|
# Note: stream_options is not a valid parameter for Azure OpenAI.
|
|
# To support users proxying Azure through ChatOpenAI, here we only specify
|
|
# stream_options if include_usage is set to True.
|
|
# See https://learn.microsoft.com/en-us/azure/ai-services/openai/whats-new
|
|
# for release notes.
|
|
if stream_usage:
|
|
kwargs["stream_options"] = {"include_usage": stream_usage}
|
|
|
|
return super()._stream(*args, **kwargs)
|
|
|
|
async def _astream(
|
|
self, *args: Any, stream_usage: Optional[bool] = None, **kwargs: Any
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
"""Set default stream_options."""
|
|
stream_usage = self._should_stream_usage(stream_usage, **kwargs)
|
|
if stream_usage:
|
|
kwargs["stream_options"] = {"include_usage": stream_usage}
|
|
|
|
async for chunk in super()._astream(*args, **kwargs):
|
|
yield chunk
|
|
|
|
def with_structured_output(
|
|
self,
|
|
schema: Optional[_DictOrPydanticClass] = None,
|
|
*,
|
|
method: Literal["function_calling", "json_mode", "json_schema"] = "json_schema",
|
|
include_raw: bool = False,
|
|
strict: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, _DictOrPydantic]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema:
|
|
The output schema. Can be passed in as:
|
|
|
|
- a JSON Schema,
|
|
- a TypedDict class,
|
|
- or a Pydantic class,
|
|
- an OpenAI function/tool schema.
|
|
|
|
If ``schema`` is a Pydantic class then the model output will be a
|
|
Pydantic instance of that class, and the model-generated fields will be
|
|
validated by the Pydantic class. Otherwise the model output will be a
|
|
dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
|
|
for more on how to properly specify types and descriptions of
|
|
schema fields when specifying a Pydantic or TypedDict class.
|
|
|
|
method: The method for steering model generation, one of:
|
|
|
|
- "json_schema":
|
|
Uses OpenAI's Structured Output API:
|
|
https://platform.openai.com/docs/guides/structured-outputs
|
|
Supported for "gpt-4o-mini", "gpt-4o-2024-08-06", "o1", and later
|
|
models.
|
|
- "function_calling":
|
|
Uses OpenAI's tool-calling (formerly called function calling)
|
|
API: https://platform.openai.com/docs/guides/function-calling
|
|
- "json_mode":
|
|
Uses OpenAI's JSON mode. Note that if using JSON mode then you
|
|
must include instructions for formatting the output into the
|
|
desired schema into the model call:
|
|
https://platform.openai.com/docs/guides/structured-outputs/json-mode
|
|
|
|
Learn more about the differences between the methods and which models
|
|
support which methods here:
|
|
|
|
- https://platform.openai.com/docs/guides/structured-outputs/structured-outputs-vs-json-mode
|
|
- https://platform.openai.com/docs/guides/structured-outputs/function-calling-vs-response-format
|
|
|
|
include_raw:
|
|
If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
strict:
|
|
|
|
- True:
|
|
Model output is guaranteed to exactly match the schema.
|
|
The input schema will also be validated according to
|
|
https://platform.openai.com/docs/guides/structured-outputs/supported-schemas
|
|
- False:
|
|
Input schema will not be validated and model output will not be
|
|
validated.
|
|
- None:
|
|
``strict`` argument will not be passed to the model.
|
|
|
|
If schema is specified via TypedDict or JSON schema, ``strict`` is not
|
|
enabled by default. Pass ``strict=True`` to enable it.
|
|
|
|
Note: ``strict`` can only be non-null if ``method`` is
|
|
``"json_schema"`` or ``"function_calling"``.
|
|
|
|
kwargs: Additional keyword args aren't supported.
|
|
|
|
Returns:
|
|
A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
|
|
|
|
| If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs an instance of ``schema`` (i.e., a Pydantic object). Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
|
|
|
|
| If ``include_raw`` is True, then Runnable outputs a dict with keys:
|
|
|
|
- "raw": BaseMessage
|
|
- "parsed": None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
|
|
- "parsing_error": Optional[BaseException]
|
|
|
|
.. versionchanged:: 0.1.20
|
|
|
|
Added support for TypedDict class ``schema``.
|
|
|
|
.. versionchanged:: 0.1.21
|
|
|
|
Support for ``strict`` argument added.
|
|
Support for ``method="json_schema"`` added.
|
|
|
|
.. versionchanged:: 0.3.0
|
|
|
|
``method`` default changed from "function_calling" to "json_schema".
|
|
|
|
.. dropdown:: Example: schema=Pydantic class, method="json_schema", include_raw=False, strict=True
|
|
|
|
Note, OpenAI has a number of restrictions on what types of schemas can be
|
|
provided if ``strict`` = True. When using Pydantic, our model cannot
|
|
specify any Field metadata (like min/max constraints) and fields cannot
|
|
have default values.
|
|
|
|
See all constraints here: https://platform.openai.com/docs/guides/structured-outputs/supported-schemas
|
|
|
|
.. code-block:: python
|
|
|
|
from typing import Optional
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
|
|
answer: str
|
|
justification: Optional[str] = Field(
|
|
default=..., description="A justification for the answer."
|
|
)
|
|
|
|
|
|
llm = ChatOpenAI(model="gpt-4o", temperature=0)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
|
|
# -> AnswerWithJustification(
|
|
# answer='They weigh the same',
|
|
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
|
# )
|
|
|
|
.. dropdown:: Example: schema=Pydantic class, method="function_calling", include_raw=False, strict=False
|
|
|
|
.. code-block:: python
|
|
|
|
from typing import Optional
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
|
|
answer: str
|
|
justification: Optional[str] = Field(
|
|
default=..., description="A justification for the answer."
|
|
)
|
|
|
|
|
|
llm = ChatOpenAI(model="gpt-4o", temperature=0)
|
|
structured_llm = llm.with_structured_output(
|
|
AnswerWithJustification, method="function_calling"
|
|
)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
|
|
# -> AnswerWithJustification(
|
|
# answer='They weigh the same',
|
|
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
|
# )
|
|
|
|
.. dropdown:: Example: schema=Pydantic class, method="json_schema", include_raw=True
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
from pydantic import BaseModel
|
|
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
|
|
answer: str
|
|
justification: str
|
|
|
|
|
|
llm = ChatOpenAI(model="gpt-4o", temperature=0)
|
|
structured_llm = llm.with_structured_output(
|
|
AnswerWithJustification, include_raw=True
|
|
)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
# -> {
|
|
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
|
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
.. dropdown:: Example: schema=TypedDict class, method="json_schema", include_raw=False, strict=False
|
|
|
|
.. code-block:: python
|
|
|
|
# IMPORTANT: If you are using Python <=3.8, you need to import Annotated
|
|
# from typing_extensions, not from typing.
|
|
from typing_extensions import Annotated, TypedDict
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
|
|
|
|
class AnswerWithJustification(TypedDict):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
|
|
answer: str
|
|
justification: Annotated[
|
|
Optional[str], None, "A justification for the answer."
|
|
]
|
|
|
|
|
|
llm = ChatOpenAI(model="gpt-4o", temperature=0)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
# -> {
|
|
# 'answer': 'They weigh the same',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
|
# }
|
|
|
|
.. dropdown:: Example: schema=OpenAI function schema, method="json_schema", include_raw=False
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
|
|
oai_schema = {
|
|
'name': 'AnswerWithJustification',
|
|
'description': 'An answer to the user question along with justification for the answer.',
|
|
'parameters': {
|
|
'type': 'object',
|
|
'properties': {
|
|
'answer': {'type': 'string'},
|
|
'justification': {'description': 'A justification for the answer.', 'type': 'string'}
|
|
},
|
|
'required': ['answer']
|
|
}
|
|
}
|
|
|
|
llm = ChatOpenAI(model="gpt-4o", temperature=0)
|
|
structured_llm = llm.with_structured_output(oai_schema)
|
|
|
|
structured_llm.invoke(
|
|
"What weighs more a pound of bricks or a pound of feathers"
|
|
)
|
|
# -> {
|
|
# 'answer': 'They weigh the same',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
|
# }
|
|
|
|
.. dropdown:: Example: schema=Pydantic class, method="json_mode", include_raw=True
|
|
|
|
.. code-block::
|
|
|
|
from langchain_openai import ChatOpenAI
|
|
from pydantic import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = ChatOpenAI(model="gpt-4o", temperature=0)
|
|
structured_llm = llm.with_structured_output(
|
|
AnswerWithJustification,
|
|
method="json_mode",
|
|
include_raw=True
|
|
)
|
|
|
|
structured_llm.invoke(
|
|
"Answer the following question. "
|
|
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\\n\\n"
|
|
"What's heavier a pound of bricks or a pound of feathers?"
|
|
)
|
|
# -> {
|
|
# 'raw': AIMessage(content='{\\n "answer": "They are both the same weight.",\\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \\n}'),
|
|
# 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
.. dropdown:: Example: schema=None, method="json_mode", include_raw=True
|
|
|
|
.. code-block::
|
|
|
|
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
|
|
|
|
structured_llm.invoke(
|
|
"Answer the following question. "
|
|
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\\n\\n"
|
|
"What's heavier a pound of bricks or a pound of feathers?"
|
|
)
|
|
# -> {
|
|
# 'raw': AIMessage(content='{\\n "answer": "They are both the same weight.",\\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \\n}'),
|
|
# 'parsed': {
|
|
# 'answer': 'They are both the same weight.',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'
|
|
# },
|
|
# 'parsing_error': None
|
|
# }
|
|
""" # noqa: E501
|
|
return super().with_structured_output(
|
|
schema, method=method, include_raw=include_raw, strict=strict, **kwargs
|
|
)
|
|
|
|
|
|
def _is_pydantic_class(obj: Any) -> bool:
|
|
return isinstance(obj, type) and is_basemodel_subclass(obj)
|
|
|
|
|
|
def _lc_tool_call_to_openai_tool_call(tool_call: ToolCall) -> dict:
|
|
return {
|
|
"type": "function",
|
|
"id": tool_call["id"],
|
|
"function": {
|
|
"name": tool_call["name"],
|
|
"arguments": json.dumps(tool_call["args"]),
|
|
},
|
|
}
|
|
|
|
|
|
def _lc_invalid_tool_call_to_openai_tool_call(
|
|
invalid_tool_call: InvalidToolCall,
|
|
) -> dict:
|
|
return {
|
|
"type": "function",
|
|
"id": invalid_tool_call["id"],
|
|
"function": {
|
|
"name": invalid_tool_call["name"],
|
|
"arguments": invalid_tool_call["args"],
|
|
},
|
|
}
|
|
|
|
|
|
def _url_to_size(image_source: str) -> Optional[Tuple[int, int]]:
|
|
try:
|
|
from PIL import Image # type: ignore[import]
|
|
except ImportError:
|
|
logger.info(
|
|
"Unable to count image tokens. To count image tokens please install "
|
|
"`pip install -U pillow httpx`."
|
|
)
|
|
return None
|
|
if _is_url(image_source):
|
|
try:
|
|
import httpx
|
|
except ImportError:
|
|
logger.info(
|
|
"Unable to count image tokens. To count image tokens please install "
|
|
"`pip install -U httpx`."
|
|
)
|
|
return None
|
|
response = httpx.get(image_source)
|
|
response.raise_for_status()
|
|
width, height = Image.open(BytesIO(response.content)).size
|
|
return width, height
|
|
elif _is_b64(image_source):
|
|
_, encoded = image_source.split(",", 1)
|
|
data = base64.b64decode(encoded)
|
|
width, height = Image.open(BytesIO(data)).size
|
|
return width, height
|
|
else:
|
|
return None
|
|
|
|
|
|
def _count_image_tokens(width: int, height: int) -> int:
|
|
# Reference: https://platform.openai.com/docs/guides/vision/calculating-costs
|
|
width, height = _resize(width, height)
|
|
h = ceil(height / 512)
|
|
w = ceil(width / 512)
|
|
return (170 * h * w) + 85
|
|
|
|
|
|
def _is_url(s: str) -> bool:
|
|
try:
|
|
result = urlparse(s)
|
|
return all([result.scheme, result.netloc])
|
|
except Exception as e:
|
|
logger.debug(f"Unable to parse URL: {e}")
|
|
return False
|
|
|
|
|
|
def _is_b64(s: str) -> bool:
|
|
return s.startswith("data:image")
|
|
|
|
|
|
def _resize(width: int, height: int) -> Tuple[int, int]:
|
|
# larger side must be <= 2048
|
|
if width > 2048 or height > 2048:
|
|
if width > height:
|
|
height = (height * 2048) // width
|
|
width = 2048
|
|
else:
|
|
width = (width * 2048) // height
|
|
height = 2048
|
|
# smaller side must be <= 768
|
|
if width > 768 and height > 768:
|
|
if width > height:
|
|
width = (width * 768) // height
|
|
height = 768
|
|
else:
|
|
height = (width * 768) // height
|
|
width = 768
|
|
return width, height
|
|
|
|
|
|
def _convert_to_openai_response_format(
|
|
schema: Union[Dict[str, Any], Type], *, strict: Optional[bool] = None
|
|
) -> Union[Dict, TypeBaseModel]:
|
|
if isinstance(schema, type) and is_basemodel_subclass(schema):
|
|
return schema
|
|
|
|
if (
|
|
isinstance(schema, dict)
|
|
and "json_schema" in schema
|
|
and schema.get("type") == "json_schema"
|
|
):
|
|
response_format = schema
|
|
elif isinstance(schema, dict) and "name" in schema and "schema" in schema:
|
|
response_format = {"type": "json_schema", "json_schema": schema}
|
|
else:
|
|
if strict is None:
|
|
if isinstance(schema, dict) and isinstance(schema.get("strict"), bool):
|
|
strict = schema["strict"]
|
|
else:
|
|
strict = False
|
|
function = convert_to_openai_tool(schema, strict=strict)["function"]
|
|
function["schema"] = function.pop("parameters")
|
|
response_format = {"type": "json_schema", "json_schema": function}
|
|
|
|
if strict is not None and strict is not response_format["json_schema"].get(
|
|
"strict"
|
|
):
|
|
msg = (
|
|
f"Output schema already has 'strict' value set to "
|
|
f"{schema['json_schema']['strict']} but 'strict' also passed in to "
|
|
f"with_structured_output as {strict}. Please make sure that "
|
|
f"'strict' is only specified in one place."
|
|
)
|
|
raise ValueError(msg)
|
|
return response_format
|
|
|
|
|
|
def _oai_structured_outputs_parser(
|
|
ai_msg: AIMessage, schema: Type[_BM]
|
|
) -> PydanticBaseModel:
|
|
if parsed := ai_msg.additional_kwargs.get("parsed"):
|
|
if isinstance(parsed, dict):
|
|
return schema(**parsed)
|
|
else:
|
|
return parsed
|
|
elif ai_msg.additional_kwargs.get("refusal"):
|
|
raise OpenAIRefusalError(ai_msg.additional_kwargs["refusal"])
|
|
else:
|
|
raise ValueError(
|
|
"Structured Output response does not have a 'parsed' field nor a 'refusal' "
|
|
f"field. Received message:\n\n{ai_msg}"
|
|
)
|
|
|
|
|
|
class OpenAIRefusalError(Exception):
|
|
"""Error raised when OpenAI Structured Outputs API returns a refusal.
|
|
|
|
When using OpenAI's Structured Outputs API with user-generated input, the model
|
|
may occasionally refuse to fulfill the request for safety reasons.
|
|
|
|
See here for more on refusals:
|
|
https://platform.openai.com/docs/guides/structured-outputs/refusals
|
|
|
|
.. versionadded:: 0.1.21
|
|
"""
|
|
|
|
|
|
def _create_usage_metadata(oai_token_usage: dict) -> UsageMetadata:
|
|
input_tokens = oai_token_usage.get("prompt_tokens", 0)
|
|
output_tokens = oai_token_usage.get("completion_tokens", 0)
|
|
total_tokens = oai_token_usage.get("total_tokens", input_tokens + output_tokens)
|
|
input_token_details: dict = {
|
|
"audio": (oai_token_usage.get("prompt_tokens_details") or {}).get(
|
|
"audio_tokens"
|
|
),
|
|
"cache_read": (oai_token_usage.get("prompt_tokens_details") or {}).get(
|
|
"cached_tokens"
|
|
),
|
|
}
|
|
output_token_details: dict = {
|
|
"audio": (oai_token_usage.get("completion_tokens_details") or {}).get(
|
|
"audio_tokens"
|
|
),
|
|
"reasoning": (oai_token_usage.get("completion_tokens_details") or {}).get(
|
|
"reasoning_tokens"
|
|
),
|
|
}
|
|
return UsageMetadata(
|
|
input_tokens=input_tokens,
|
|
output_tokens=output_tokens,
|
|
total_tokens=total_tokens,
|
|
input_token_details=InputTokenDetails(
|
|
**{k: v for k, v in input_token_details.items() if v is not None}
|
|
),
|
|
output_token_details=OutputTokenDetails(
|
|
**{k: v for k, v in output_token_details.items() if v is not None}
|
|
),
|
|
)
|
|
|
|
|
|
def _convert_to_json_schema(
|
|
schema: Union[Dict[str, Any], Type], *, strict: Optional[bool] = None
|
|
) -> Union[Dict, TypeBaseModel]:
|
|
if _is_pydantic_class(schema):
|
|
schema = convert_to_openai_function(schema)
|
|
response_format = cast(
|
|
dict, _convert_to_openai_response_format(schema, strict=strict)
|
|
)
|
|
json_schema = response_format["json_schema"]["schema"]
|
|
if "name" in response_format["json_schema"]:
|
|
json_schema["title"] = response_format["json_schema"]["name"]
|
|
if "description" in response_format["json_schema"]:
|
|
json_schema["description"] = response_format["json_schema"]["description"]
|
|
return json_schema
|