langchain/docs/docs/integrations/document_loaders/airbyte.ipynb
2024-02-29 16:02:13 -08:00

298 lines
7.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "1f3a5ebf",
"metadata": {},
"source": [
"# AirbyteLoader"
]
},
{
"cell_type": "markdown",
"id": "35ac77b1-449b-44f7-b8f3-3494d55c286e",
"metadata": {},
"source": [
">[Airbyte](https://github.com/airbytehq/airbyte) is a data integration platform for ELT pipelines from APIs, databases & files to warehouses & lakes. It has the largest catalog of ELT connectors to data warehouses and databases.\n",
"\n",
"This covers how to load any source from Airbyte into LangChain documents\n",
"\n",
"## Installation\n",
"\n",
"In order to use `AirbyteLoader` you need to install the `langchain-airbyte` integration package."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "180c8b74",
"metadata": {},
"outputs": [],
"source": [
"% pip install -qU langchain-airbyte"
]
},
{
"cell_type": "markdown",
"id": "3dd92c62",
"metadata": {},
"source": [
"Note: Currently, the `airbyte` library does not support Pydantic v2.\n",
"Please downgrade to Pydantic v1 to use this package.\n",
"\n",
"Note: This package also currently requires Python 3.10+.\n",
"\n",
"## Loading Documents\n",
"\n",
"By default, the `AirbyteLoader` will load any structured data from a stream and output yaml-formatted documents."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "721d9316",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"```yaml\n",
"academic_degree: PhD\n",
"address:\n",
" city: Lauderdale Lakes\n",
" country_code: FI\n",
" postal_code: '75466'\n",
" province: New Jersey\n",
" state: Hawaii\n",
" street_name: Stoneyford\n",
" street_number: '1112'\n",
"age: 44\n",
"blood_type: \"O\\u2212\"\n",
"created_at: '2004-04-02T13:05:27+00:00'\n",
"email: bread2099+1@outlook.com\n",
"gender: Fluid\n",
"height: '1.62'\n",
"id: 1\n",
"language: Belarusian\n",
"name: Moses\n",
"nationality: Dutch\n",
"occupation: Track Worker\n",
"telephone: 1-467-194-2318\n",
"title: M.Sc.Tech.\n",
"updated_at: '2024-02-27T16:41:01+00:00'\n",
"weight: 6\n"
]
}
],
"source": [
"from langchain_airbyte import AirbyteLoader\n",
"\n",
"loader = AirbyteLoader(\n",
" source=\"source-faker\",\n",
" stream=\"users\",\n",
" config={\"count\": 10},\n",
")\n",
"docs = loader.load()\n",
"print(docs[0].page_content[:500])"
]
},
{
"cell_type": "markdown",
"id": "fca024cb",
"metadata": {
"scrolled": true
},
"source": [
"You can also specify a custom prompt template for formatting documents:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "9fa002a5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"My name is Verdie and I am 1.73 meters tall.\n"
]
}
],
"source": [
"from langchain_core.prompts import PromptTemplate\n",
"\n",
"loader_templated = AirbyteLoader(\n",
" source=\"source-faker\",\n",
" stream=\"users\",\n",
" config={\"count\": 10},\n",
" template=PromptTemplate.from_template(\n",
" \"My name is {name} and I am {height} meters tall.\"\n",
" ),\n",
")\n",
"docs_templated = loader_templated.load()\n",
"print(docs_templated[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "d3e6d887",
"metadata": {},
"source": [
"## Lazy Loading Documents\n",
"\n",
"One of the powerful features of `AirbyteLoader` is its ability to load large documents from upstream sources. When working with large datasets, the default `.load()` behavior can be slow and memory-intensive. To avoid this, you can use the `.lazy_load()` method to load documents in a more memory-efficient manner."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "684b9187",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Just calling lazy load is quick! This took 0.0001 seconds\n"
]
}
],
"source": [
"import time\n",
"\n",
"loader = AirbyteLoader(\n",
" source=\"source-faker\",\n",
" stream=\"users\",\n",
" config={\"count\": 3},\n",
" template=PromptTemplate.from_template(\n",
" \"My name is {name} and I am {height} meters tall.\"\n",
" ),\n",
")\n",
"\n",
"start_time = time.time()\n",
"my_iterator = loader.lazy_load()\n",
"print(\n",
" f\"Just calling lazy load is quick! This took {time.time() - start_time:.4f} seconds\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "6b24a64b",
"metadata": {},
"source": [
"And you can iterate over documents as they're yielded:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "3e8355d0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"My name is Andera and I am 1.91 meters tall.\n",
"My name is Jody and I am 1.85 meters tall.\n",
"My name is Zonia and I am 1.53 meters tall.\n"
]
}
],
"source": [
"for doc in my_iterator:\n",
" print(doc.page_content)"
]
},
{
"cell_type": "markdown",
"id": "d1040d81",
"metadata": {},
"source": [
"You can also lazy load documents in an async manner with `.alazy_load()`:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "dc5d0911",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"My name is Carmelina and I am 1.74 meters tall.\n",
"My name is Ali and I am 1.90 meters tall.\n",
"My name is Rochell and I am 1.83 meters tall.\n"
]
}
],
"source": [
"loader = AirbyteLoader(\n",
" source=\"source-faker\",\n",
" stream=\"users\",\n",
" config={\"count\": 3},\n",
" template=PromptTemplate.from_template(\n",
" \"My name is {name} and I am {height} meters tall.\"\n",
" ),\n",
")\n",
"\n",
"my_async_iterator = loader.alazy_load()\n",
"\n",
"async for doc in my_async_iterator:\n",
" print(doc.page_content)"
]
},
{
"cell_type": "markdown",
"id": "ba4ede33",
"metadata": {},
"source": [
"## Configuration\n",
"\n",
"`AirbyteLoader` can be configured with the following options:\n",
"\n",
"- `source` (str, required): The name of the Airbyte source to load from.\n",
"- `stream` (str, required): The name of the stream to load from (Airbyte sources can return multiple streams)\n",
"- `config` (dict, required): The configuration for the Airbyte source\n",
"- `template` (PromptTemplate, optional): A custom prompt template for formatting documents\n",
"- `include_metadata` (bool, optional, default True): Whether to include all fields as metadata in the output documents\n",
"\n",
"The majority of the configuration will be in `config`, and you can find the specific configuration options in the \"Config field reference\" for each source in the [Airbyte documentation](https://docs.airbyte.com/integrations/)."
]
},
{
"cell_type": "markdown",
"id": "2e2ed269",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}