langchain/docs/scripts/notebook_convert.py
Really Him fbd2e10703
docs: hide jsx in llm chain tutorial (#30187)
## **Description:** 
The Jupyter notebooks in the docs section are extremely useful and
critical for widespread adoption of LangChain amongst new developers.
However, because they are also converted to MDX and used to build the
HTML for the Docusaurus site, they contain JSX code that degrades
readability when opened in a "notebook" setting (local notebook server,
google colab, etc.). For instance, here we see the website, with a nice
React tab component for installation instructions (`pip` vs `conda`):

![Screenshot 2025-03-07 at 2 07
15 PM](https://github.com/user-attachments/assets/a528d618-f5a0-4d2e-9aed-16d4b8148b5a)

Now, here is the same notebook viewed in colab:

![Screenshot 2025-03-07 at 2 08
41 PM](https://github.com/user-attachments/assets/87acf5b7-a3e0-46ac-8126-6cac6eb93586)

Note that the text following "To install LangChain run:" contains
snippets of JSX code that is (i) confusing, (ii) bad for readability,
(iii) potentially misleading for a novice developer, who might take it
literally to mean that "to install LangChain I should run `import Tabs
from...`" and then an ill-formed command which mixes the `pip` and
`conda` installation instructions.

Ideally, we would like to have a system that presents a
similar/equivalent UI when viewing the notebooks on the documentation
site, or when interacting with them in a notebook setting - or, at a
minimum, we should not present ill-formed JSX snippets to someone trying
to execute the notebooks. As the documentation itself states, running
the notebooks yourself is a great way to learn the tools. Therefore,
these distracting and ill-formed snippets are contrary to that goal.

## **Fixes:**
* Comment out the JSX code inside the notebook
`docs/tutorials/llm_chain` with a special directive `<!-- HIDE_IN_NB`
(closed with `HIDE_IN_NB -->`). This makes the JSX code "invisible" when
viewed in a notebook setting.
* Add a custom preprocessor that runs process_cell and just erases these
comment strings. This makes sure they are rendered when converted to
MDX.
* Minor tweak: Refactor some of the Markdown instructions into an
executable codeblock for better experience when running as a notebook.
* Minor tweak: Optionally try to get the environment variables from a
`.env` file in the repo so the user doesn't have to enter it every time.
Depends on the user installing `python-dotenv` and adding their own
`.env` file.
* Add an environment variable for "LANGSMITH_PROJECT"
(default="default"), per the LangSmith docs, so a local user can target
a specific project in their LangSmith account.

**NOTE:** If this PR is approved, and the maintainers agree with the
general goal of aligning the notebook execution experience and the doc
site UI, I would plan to implement this on the rest of the JSX snippets
that are littered in the notebooks.

**NOTE:** I wasn't able to/don't know how to run the linkcheck Makefile
commands.

- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Really Him <hesereallyhim@proton.me>
2025-03-26 14:22:33 -04:00

225 lines
7.6 KiB
Python

import multiprocessing
import os
import re
import sys
from pathlib import Path
from typing import Iterable, Tuple
import nbformat
from nbconvert.exporters import MarkdownExporter
from nbconvert.preprocessors import Preprocessor
HIDE_IN_NB_MAGIC_OPEN = "<!-- HIDE_IN_NB"
HIDE_IN_NB_MAGIC_CLOSE = "HIDE_IN_NB -->"
class EscapePreprocessor(Preprocessor):
def preprocess_cell(self, cell, resources, index):
if cell.cell_type == "markdown":
# rewrite .ipynb links to .md
cell.source = re.sub(
r"\[([^\]]*)\]\((?![^\)]*//)([^)]*)\.ipynb\)",
r"[\1](\2.md)",
cell.source,
)
elif cell.cell_type == "code":
# escape ``` in code
cell.source = cell.source.replace("```", r"\`\`\`")
# escape ``` in output
# allow overriding title based on comment at beginning of cell
if cell.source.startswith("# title="):
lines = cell.source.split("\n")
title = lines[0].split("# title=")[1]
if title.startswith('"') and title.endswith('"'):
title = title[1:-1]
cell.metadata["title"] = title
cell.source = "\n".join(lines[1:])
if "outputs" in cell:
filter_out = set()
for i, output in enumerate(cell["outputs"]):
if "text" in output:
if not output["text"].strip():
filter_out.add(i)
continue
output["text"] = output["text"].replace("```", r"\`\`\`")
elif "data" in output:
for key, value in output["data"].items():
if isinstance(value, str):
output["data"][key] = value.replace("```", r"\`\`\`")
cell["outputs"] = [
output
for i, output in enumerate(cell["outputs"])
if i not in filter_out
]
return cell, resources
class ExtractAttachmentsPreprocessor(Preprocessor):
"""
Extracts all of the outputs from the notebook file. The extracted
outputs are returned in the 'resources' dictionary.
"""
def preprocess_cell(self, cell, resources, index):
"""
Apply a transformation on each cell,
Parameters
----------
cell : NotebookNode cell
Notebook cell being processed
resources : dictionary
Additional resources used in the conversion process. Allows
preprocessors to pass variables into the Jinja engine.
cell_index : int
Index of the cell being processed (see base.py)
"""
# Get files directory if it has been specified
# Make sure outputs key exists
if not isinstance(resources["outputs"], dict):
resources["outputs"] = {}
# Loop through all of the attachments in the cell
for name, attach in cell.get("attachments", {}).items():
for mime, data in attach.items():
if mime not in {
"image/png",
"image/jpeg",
"image/svg+xml",
"application/pdf",
}:
continue
# attachments are pre-rendered. Only replace markdown-formatted
# images with the following logic
attach_str = f"({name})"
if attach_str in cell.source:
data = f"(data:{mime};base64,{data})"
cell.source = cell.source.replace(attach_str, data)
return cell, resources
class CustomRegexRemovePreprocessor(Preprocessor):
def check_conditions(self, cell):
pattern = re.compile(r"(?s)(?:\s*\Z)|(?:.*#\s*\|\s*output:\s*false.*)")
rtn = not pattern.match(cell.source)
if not rtn:
return False
else:
return True
def preprocess(self, nb, resources):
nb.cells = [cell for cell in nb.cells if self.check_conditions(cell)]
return nb, resources
class UnHidePreprocessor(Preprocessor):
def preprocess_cell(self, cell, resources, index):
cell.source = cell.source.replace(HIDE_IN_NB_MAGIC_OPEN, "")
cell.source = cell.source.replace(HIDE_IN_NB_MAGIC_CLOSE, "")
return cell, resources
exporter = MarkdownExporter(
preprocessors=[
EscapePreprocessor,
ExtractAttachmentsPreprocessor,
CustomRegexRemovePreprocessor,
UnHidePreprocessor,
],
template_name="mdoutput",
extra_template_basedirs=["./scripts/notebook_convert_templates"],
)
def _process_path(tup: Tuple[Path, Path, Path]):
notebook_path, intermediate_docs_dir, output_docs_dir = tup
relative = notebook_path.relative_to(intermediate_docs_dir)
output_path = output_docs_dir / relative.parent / (relative.stem + ".md")
_convert_notebook(notebook_path, output_path, intermediate_docs_dir)
def _modify_frontmatter(
body: str, notebook_path: Path, intermediate_docs_dir: Path
) -> str:
# if frontmatter exists
rel_path = notebook_path.relative_to(intermediate_docs_dir).as_posix()
edit_url = (
f"https://github.com/langchain-ai/langchain/edit/master/docs/docs/{rel_path}"
)
frontmatter = {
"custom_edit_url": edit_url,
}
if re.match(r"^[\s\n]*---\n", body):
# frontmatter already present
for k, v in frontmatter.items():
# if key already exists, leave it
if re.match(f"{k}: ", body):
continue
else:
body = re.sub(r"^[\s\n]*---\n", f"---\n{k}: {v}\n", body, count=1)
return body
else:
insert = "\n".join([f"{k}: {v}" for k, v in frontmatter.items()])
return f"---\n{insert}\n---\n{body}"
def _convert_notebook(
notebook_path: Path, output_path: Path, intermediate_docs_dir: Path
) -> Path:
with open(notebook_path) as f:
nb = nbformat.read(f, as_version=4)
body, resources = exporter.from_notebook_node(nb)
body = _modify_frontmatter(body, notebook_path, intermediate_docs_dir)
output_path.parent.mkdir(parents=True, exist_ok=True)
with open(output_path, "w") as f:
f.write(body)
return output_path
if __name__ == "__main__":
intermediate_docs_dir = Path(sys.argv[1])
output_docs_dir = Path(sys.argv[2])
source_paths_arg = os.environ.get("SOURCE_PATHS")
source_paths: Iterable[Path]
if source_paths_arg:
source_path_strs = re.split(r"\s+", source_paths_arg)
source_paths_stripped = [p.strip() for p in source_path_strs]
source_paths = [intermediate_docs_dir / p for p in source_paths_stripped if p]
else:
original_paths = list(intermediate_docs_dir.glob("**/*.ipynb"))
# exclude files that exist in output directory and are newer
relative_paths = [p.relative_to(intermediate_docs_dir) for p in original_paths]
out_paths = [
output_docs_dir / p.parent / (p.stem + ".md") for p in relative_paths
]
source_paths = [
p
for p, o in zip(original_paths, out_paths)
if not o.exists() or o.stat().st_mtime < p.stat().st_mtime
]
print(f"rebuilding {len(source_paths)}/{len(relative_paths)} notebooks")
with multiprocessing.Pool() as pool:
pool.map(
_process_path,
(
(notebook_path, intermediate_docs_dir, output_docs_dir)
for notebook_path in source_paths
),
)