langchain/libs/community/tests/unit_tests/chat_models/test_perplexity.py

119 lines
3.7 KiB
Python

"""Test Perplexity Chat API wrapper."""
import os
from typing import Any, Dict, List, Optional, Tuple, Type
from unittest.mock import MagicMock
import pytest
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import AIMessageChunk, BaseMessageChunk
from langchain_tests.unit_tests import ChatModelUnitTests
from pytest_mock import MockerFixture
from langchain_community.chat_models import ChatPerplexity
os.environ["PPLX_API_KEY"] = "foo"
@pytest.mark.requires("openai")
class TestPerplexityStandard(ChatModelUnitTests):
@property
def chat_model_class(self) -> Type[BaseChatModel]:
return ChatPerplexity
@property
def init_from_env_params(self) -> Tuple[dict, dict, dict]:
return (
{"PPLX_API_KEY": "api_key"},
{},
{"pplx_api_key": "api_key"},
)
@pytest.mark.requires("openai")
def test_perplexity_model_name_param() -> None:
llm = ChatPerplexity(model="foo") # type: ignore[call-arg]
assert llm.model == "foo"
@pytest.mark.requires("openai")
def test_perplexity_model_kwargs() -> None:
llm = ChatPerplexity(model="test", model_kwargs={"foo": "bar"}) # type: ignore[call-arg]
assert llm.model_kwargs == {"foo": "bar"}
@pytest.mark.requires("openai")
def test_perplexity_initialization() -> None:
"""Test perplexity initialization."""
# Verify that chat perplexity can be initialized using a secret key provided
# as a parameter rather than an environment variable.
for model in [
ChatPerplexity( # type: ignore[call-arg]
model="test", timeout=1, api_key="test", temperature=0.7, verbose=True
),
ChatPerplexity( # type: ignore[call-arg]
model="test",
request_timeout=1,
pplx_api_key="test",
temperature=0.7,
verbose=True,
),
]:
assert model.request_timeout == 1
assert model.pplx_api_key == "test"
@pytest.mark.requires("openai")
def test_perplexity_stream_includes_citations(mocker: MockerFixture) -> None:
"""Test that the stream method includes citations in the additional_kwargs."""
llm = ChatPerplexity(
model="test",
timeout=30,
verbose=True,
)
mock_chunk_0 = {
"choices": [
{
"delta": {
"content": "Hello ",
},
"finish_reason": None,
}
],
"citations": ["example.com", "example2.com"],
}
mock_chunk_1 = {
"choices": [
{
"delta": {
"content": "Perplexity",
},
"finish_reason": None,
}
],
"citations": ["example.com", "example2.com"],
}
mock_chunks: List[Dict[str, Any]] = [mock_chunk_0, mock_chunk_1]
mock_stream = MagicMock()
mock_stream.__iter__.return_value = mock_chunks
patcher = mocker.patch.object(
llm.client.chat.completions, "create", return_value=mock_stream
)
stream = llm.stream("Hello langchain")
full: Optional[BaseMessageChunk] = None
for i, chunk in enumerate(stream):
full = chunk if full is None else full + chunk
assert chunk.content == mock_chunks[i]["choices"][0]["delta"]["content"]
if i == 0:
assert chunk.additional_kwargs["citations"] == [
"example.com",
"example2.com",
]
else:
assert "citations" not in chunk.additional_kwargs
assert isinstance(full, AIMessageChunk)
assert full.content == "Hello Perplexity"
assert full.additional_kwargs == {"citations": ["example.com", "example2.com"]}
patcher.assert_called_once()