mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-29 19:18:53 +00:00
489 lines
18 KiB
Python
489 lines
18 KiB
Python
# flake8: noqa
|
|
"""Load tools."""
|
|
import warnings
|
|
from typing import Any, Dict, List, Optional, Callable, Tuple
|
|
from mypy_extensions import Arg, KwArg
|
|
|
|
from langchain.agents.tools import Tool
|
|
from langchain.schema.language_model import BaseLanguageModel
|
|
from langchain.callbacks.base import BaseCallbackManager
|
|
from langchain.callbacks.manager import Callbacks
|
|
from langchain.chains.api import news_docs, open_meteo_docs, podcast_docs, tmdb_docs
|
|
from langchain.chains.api.base import APIChain
|
|
from langchain.chains.llm_math.base import LLMMathChain
|
|
from langchain.chains.pal.base import PALChain
|
|
from langchain.requests import TextRequestsWrapper
|
|
from langchain.tools.arxiv.tool import ArxivQueryRun
|
|
from langchain.tools.pubmed.tool import PubmedQueryRun
|
|
from langchain.tools.base import BaseTool
|
|
from langchain.tools.bing_search.tool import BingSearchRun
|
|
from langchain.tools.ddg_search.tool import DuckDuckGoSearchRun
|
|
from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun
|
|
from langchain.tools.metaphor_search.tool import MetaphorSearchResults
|
|
from langchain.tools.google_serper.tool import GoogleSerperResults, GoogleSerperRun
|
|
from langchain.tools.graphql.tool import BaseGraphQLTool
|
|
from langchain.tools.human.tool import HumanInputRun
|
|
from langchain.tools.python.tool import PythonREPLTool
|
|
from langchain.tools.requests.tool import (
|
|
RequestsDeleteTool,
|
|
RequestsGetTool,
|
|
RequestsPatchTool,
|
|
RequestsPostTool,
|
|
RequestsPutTool,
|
|
)
|
|
from langchain.tools.scenexplain.tool import SceneXplainTool
|
|
from langchain.tools.searx_search.tool import SearxSearchResults, SearxSearchRun
|
|
from langchain.tools.shell.tool import ShellTool
|
|
from langchain.tools.sleep.tool import SleepTool
|
|
from langchain.tools.wikipedia.tool import WikipediaQueryRun
|
|
from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun
|
|
from langchain.tools.openweathermap.tool import OpenWeatherMapQueryRun
|
|
from langchain.tools.dataforseo_api_search import DataForSeoAPISearchRun
|
|
from langchain.tools.dataforseo_api_search import DataForSeoAPISearchResults
|
|
from langchain.utilities import ArxivAPIWrapper
|
|
from langchain.utilities import PubMedAPIWrapper
|
|
from langchain.utilities.bing_search import BingSearchAPIWrapper
|
|
from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
|
|
from langchain.utilities.google_search import GoogleSearchAPIWrapper
|
|
from langchain.utilities.google_serper import GoogleSerperAPIWrapper
|
|
from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper
|
|
from langchain.utilities.awslambda import LambdaWrapper
|
|
from langchain.utilities.graphql import GraphQLAPIWrapper
|
|
from langchain.utilities.searx_search import SearxSearchWrapper
|
|
from langchain.utilities.serpapi import SerpAPIWrapper
|
|
from langchain.utilities.twilio import TwilioAPIWrapper
|
|
from langchain.utilities.wikipedia import WikipediaAPIWrapper
|
|
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
|
|
from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper
|
|
from langchain.utilities.dataforseo_api_search import DataForSeoAPIWrapper
|
|
|
|
|
|
def _get_python_repl() -> BaseTool:
|
|
return PythonREPLTool()
|
|
|
|
|
|
def _get_tools_requests_get() -> BaseTool:
|
|
return RequestsGetTool(requests_wrapper=TextRequestsWrapper())
|
|
|
|
|
|
def _get_tools_requests_post() -> BaseTool:
|
|
return RequestsPostTool(requests_wrapper=TextRequestsWrapper())
|
|
|
|
|
|
def _get_tools_requests_patch() -> BaseTool:
|
|
return RequestsPatchTool(requests_wrapper=TextRequestsWrapper())
|
|
|
|
|
|
def _get_tools_requests_put() -> BaseTool:
|
|
return RequestsPutTool(requests_wrapper=TextRequestsWrapper())
|
|
|
|
|
|
def _get_tools_requests_delete() -> BaseTool:
|
|
return RequestsDeleteTool(requests_wrapper=TextRequestsWrapper())
|
|
|
|
|
|
def _get_terminal() -> BaseTool:
|
|
return ShellTool()
|
|
|
|
|
|
def _get_sleep() -> BaseTool:
|
|
return SleepTool()
|
|
|
|
|
|
_BASE_TOOLS: Dict[str, Callable[[], BaseTool]] = {
|
|
"python_repl": _get_python_repl,
|
|
"requests": _get_tools_requests_get, # preserved for backwards compatibility
|
|
"requests_get": _get_tools_requests_get,
|
|
"requests_post": _get_tools_requests_post,
|
|
"requests_patch": _get_tools_requests_patch,
|
|
"requests_put": _get_tools_requests_put,
|
|
"requests_delete": _get_tools_requests_delete,
|
|
"terminal": _get_terminal,
|
|
"sleep": _get_sleep,
|
|
}
|
|
|
|
|
|
def _get_pal_math(llm: BaseLanguageModel) -> BaseTool:
|
|
return Tool(
|
|
name="PAL-MATH",
|
|
description="A language model that is really good at solving complex word math problems. Input should be a fully worded hard word math problem.",
|
|
func=PALChain.from_math_prompt(llm).run,
|
|
)
|
|
|
|
|
|
def _get_pal_colored_objects(llm: BaseLanguageModel) -> BaseTool:
|
|
return Tool(
|
|
name="PAL-COLOR-OBJ",
|
|
description="A language model that is really good at reasoning about position and the color attributes of objects. Input should be a fully worded hard reasoning problem. Make sure to include all information about the objects AND the final question you want to answer.",
|
|
func=PALChain.from_colored_object_prompt(llm).run,
|
|
)
|
|
|
|
|
|
def _get_llm_math(llm: BaseLanguageModel) -> BaseTool:
|
|
return Tool(
|
|
name="Calculator",
|
|
description="Useful for when you need to answer questions about math.",
|
|
func=LLMMathChain.from_llm(llm=llm).run,
|
|
coroutine=LLMMathChain.from_llm(llm=llm).arun,
|
|
)
|
|
|
|
|
|
def _get_open_meteo_api(llm: BaseLanguageModel) -> BaseTool:
|
|
chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS)
|
|
return Tool(
|
|
name="Open Meteo API",
|
|
description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.",
|
|
func=chain.run,
|
|
)
|
|
|
|
|
|
_LLM_TOOLS: Dict[str, Callable[[BaseLanguageModel], BaseTool]] = {
|
|
"pal-math": _get_pal_math,
|
|
"pal-colored-objects": _get_pal_colored_objects,
|
|
"llm-math": _get_llm_math,
|
|
"open-meteo-api": _get_open_meteo_api,
|
|
}
|
|
|
|
|
|
def _get_news_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool:
|
|
news_api_key = kwargs["news_api_key"]
|
|
chain = APIChain.from_llm_and_api_docs(
|
|
llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key}
|
|
)
|
|
return Tool(
|
|
name="News API",
|
|
description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.",
|
|
func=chain.run,
|
|
)
|
|
|
|
|
|
def _get_tmdb_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool:
|
|
tmdb_bearer_token = kwargs["tmdb_bearer_token"]
|
|
chain = APIChain.from_llm_and_api_docs(
|
|
llm,
|
|
tmdb_docs.TMDB_DOCS,
|
|
headers={"Authorization": f"Bearer {tmdb_bearer_token}"},
|
|
)
|
|
return Tool(
|
|
name="TMDB API",
|
|
description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.",
|
|
func=chain.run,
|
|
)
|
|
|
|
|
|
def _get_podcast_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool:
|
|
listen_api_key = kwargs["listen_api_key"]
|
|
chain = APIChain.from_llm_and_api_docs(
|
|
llm,
|
|
podcast_docs.PODCAST_DOCS,
|
|
headers={"X-ListenAPI-Key": listen_api_key},
|
|
)
|
|
return Tool(
|
|
name="Podcast API",
|
|
description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.",
|
|
func=chain.run,
|
|
)
|
|
|
|
|
|
def _get_lambda_api(**kwargs: Any) -> BaseTool:
|
|
return Tool(
|
|
name=kwargs["awslambda_tool_name"],
|
|
description=kwargs["awslambda_tool_description"],
|
|
func=LambdaWrapper(**kwargs).run,
|
|
)
|
|
|
|
|
|
def _get_wolfram_alpha(**kwargs: Any) -> BaseTool:
|
|
return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_google_search(**kwargs: Any) -> BaseTool:
|
|
return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_wikipedia(**kwargs: Any) -> BaseTool:
|
|
return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_arxiv(**kwargs: Any) -> BaseTool:
|
|
return ArxivQueryRun(api_wrapper=ArxivAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_pupmed(**kwargs: Any) -> BaseTool:
|
|
return PubmedQueryRun(api_wrapper=PubMedAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_google_serper(**kwargs: Any) -> BaseTool:
|
|
return GoogleSerperRun(api_wrapper=GoogleSerperAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_google_serper_results_json(**kwargs: Any) -> BaseTool:
|
|
return GoogleSerperResults(api_wrapper=GoogleSerperAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_google_search_results_json(**kwargs: Any) -> BaseTool:
|
|
return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_serpapi(**kwargs: Any) -> BaseTool:
|
|
return Tool(
|
|
name="Search",
|
|
description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.",
|
|
func=SerpAPIWrapper(**kwargs).run,
|
|
coroutine=SerpAPIWrapper(**kwargs).arun,
|
|
)
|
|
|
|
|
|
def _get_twilio(**kwargs: Any) -> BaseTool:
|
|
return Tool(
|
|
name="Text Message",
|
|
description="Useful for when you need to send a text message to a provided phone number.",
|
|
func=TwilioAPIWrapper(**kwargs).run,
|
|
)
|
|
|
|
|
|
def _get_searx_search(**kwargs: Any) -> BaseTool:
|
|
return SearxSearchRun(wrapper=SearxSearchWrapper(**kwargs))
|
|
|
|
|
|
def _get_searx_search_results_json(**kwargs: Any) -> BaseTool:
|
|
wrapper_kwargs = {k: v for k, v in kwargs.items() if k != "num_results"}
|
|
return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs)
|
|
|
|
|
|
def _get_bing_search(**kwargs: Any) -> BaseTool:
|
|
return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_metaphor_search(**kwargs: Any) -> BaseTool:
|
|
return MetaphorSearchResults(api_wrapper=MetaphorSearchAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_ddg_search(**kwargs: Any) -> BaseTool:
|
|
return DuckDuckGoSearchRun(api_wrapper=DuckDuckGoSearchAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_human_tool(**kwargs: Any) -> BaseTool:
|
|
return HumanInputRun(**kwargs)
|
|
|
|
|
|
def _get_scenexplain(**kwargs: Any) -> BaseTool:
|
|
return SceneXplainTool(**kwargs)
|
|
|
|
|
|
def _get_graphql_tool(**kwargs: Any) -> BaseTool:
|
|
graphql_endpoint = kwargs["graphql_endpoint"]
|
|
wrapper = GraphQLAPIWrapper(graphql_endpoint=graphql_endpoint)
|
|
return BaseGraphQLTool(graphql_wrapper=wrapper)
|
|
|
|
|
|
def _get_openweathermap(**kwargs: Any) -> BaseTool:
|
|
return OpenWeatherMapQueryRun(api_wrapper=OpenWeatherMapAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_dataforseo_api_search(**kwargs: Any) -> BaseTool:
|
|
return DataForSeoAPISearchRun(api_wrapper=DataForSeoAPIWrapper(**kwargs))
|
|
|
|
|
|
def _get_dataforseo_api_search_json(**kwargs: Any) -> BaseTool:
|
|
return DataForSeoAPISearchResults(api_wrapper=DataForSeoAPIWrapper(**kwargs))
|
|
|
|
|
|
_EXTRA_LLM_TOOLS: Dict[
|
|
str,
|
|
Tuple[Callable[[Arg(BaseLanguageModel, "llm"), KwArg(Any)], BaseTool], List[str]],
|
|
] = {
|
|
"news-api": (_get_news_api, ["news_api_key"]),
|
|
"tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]),
|
|
"podcast-api": (_get_podcast_api, ["listen_api_key"]),
|
|
}
|
|
|
|
_EXTRA_OPTIONAL_TOOLS: Dict[str, Tuple[Callable[[KwArg(Any)], BaseTool], List[str]]] = {
|
|
"wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]),
|
|
"google-search": (_get_google_search, ["google_api_key", "google_cse_id"]),
|
|
"google-search-results-json": (
|
|
_get_google_search_results_json,
|
|
["google_api_key", "google_cse_id", "num_results"],
|
|
),
|
|
"searx-search-results-json": (
|
|
_get_searx_search_results_json,
|
|
["searx_host", "engines", "num_results", "aiosession"],
|
|
),
|
|
"bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]),
|
|
"metaphor-search": (_get_metaphor_search, ["metaphor_api_key"]),
|
|
"ddg-search": (_get_ddg_search, []),
|
|
"google-serper": (_get_google_serper, ["serper_api_key", "aiosession"]),
|
|
"google-serper-results-json": (
|
|
_get_google_serper_results_json,
|
|
["serper_api_key", "aiosession"],
|
|
),
|
|
"serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]),
|
|
"twilio": (_get_twilio, ["account_sid", "auth_token", "from_number"]),
|
|
"searx-search": (_get_searx_search, ["searx_host", "engines", "aiosession"]),
|
|
"wikipedia": (_get_wikipedia, ["top_k_results", "lang"]),
|
|
"arxiv": (
|
|
_get_arxiv,
|
|
["top_k_results", "load_max_docs", "load_all_available_meta"],
|
|
),
|
|
"pupmed": (
|
|
_get_pupmed,
|
|
["top_k_results", "load_max_docs", "load_all_available_meta"],
|
|
),
|
|
"human": (_get_human_tool, ["prompt_func", "input_func"]),
|
|
"awslambda": (
|
|
_get_lambda_api,
|
|
["awslambda_tool_name", "awslambda_tool_description", "function_name"],
|
|
),
|
|
"sceneXplain": (_get_scenexplain, []),
|
|
"graphql": (_get_graphql_tool, ["graphql_endpoint"]),
|
|
"openweathermap-api": (_get_openweathermap, ["openweathermap_api_key"]),
|
|
"dataforseo-api-search": (
|
|
_get_dataforseo_api_search,
|
|
["api_login", "api_password", "aiosession"],
|
|
),
|
|
"dataforseo-api-search-json": (
|
|
_get_dataforseo_api_search_json,
|
|
["api_login", "api_password", "aiosession"],
|
|
),
|
|
}
|
|
|
|
|
|
def _handle_callbacks(
|
|
callback_manager: Optional[BaseCallbackManager], callbacks: Callbacks
|
|
) -> Callbacks:
|
|
if callback_manager is not None:
|
|
warnings.warn(
|
|
"callback_manager is deprecated. Please use callbacks instead.",
|
|
DeprecationWarning,
|
|
)
|
|
if callbacks is not None:
|
|
raise ValueError(
|
|
"Cannot specify both callback_manager and callbacks arguments."
|
|
)
|
|
return callback_manager
|
|
return callbacks
|
|
|
|
|
|
def load_huggingface_tool(
|
|
task_or_repo_id: str,
|
|
model_repo_id: Optional[str] = None,
|
|
token: Optional[str] = None,
|
|
remote: bool = False,
|
|
**kwargs: Any,
|
|
) -> BaseTool:
|
|
"""Loads a tool from the HuggingFace Hub.
|
|
|
|
Args:
|
|
task_or_repo_id: Task or model repo id.
|
|
model_repo_id: Optional model repo id.
|
|
token: Optional token.
|
|
remote: Optional remote. Defaults to False.
|
|
**kwargs:
|
|
|
|
Returns:
|
|
A tool.
|
|
|
|
"""
|
|
try:
|
|
from transformers import load_tool
|
|
except ImportError:
|
|
raise ImportError(
|
|
"HuggingFace tools require the libraries `transformers>=4.29.0`"
|
|
" and `huggingface_hub>=0.14.1` to be installed."
|
|
" Please install it with"
|
|
" `pip install --upgrade transformers huggingface_hub`."
|
|
)
|
|
hf_tool = load_tool(
|
|
task_or_repo_id,
|
|
model_repo_id=model_repo_id,
|
|
token=token,
|
|
remote=remote,
|
|
**kwargs,
|
|
)
|
|
outputs = hf_tool.outputs
|
|
if set(outputs) != {"text"}:
|
|
raise NotImplementedError("Multimodal outputs not supported yet.")
|
|
inputs = hf_tool.inputs
|
|
if set(inputs) != {"text"}:
|
|
raise NotImplementedError("Multimodal inputs not supported yet.")
|
|
return Tool.from_function(
|
|
hf_tool.__call__, name=hf_tool.name, description=hf_tool.description
|
|
)
|
|
|
|
|
|
def load_tools(
|
|
tool_names: List[str],
|
|
llm: Optional[BaseLanguageModel] = None,
|
|
callbacks: Callbacks = None,
|
|
**kwargs: Any,
|
|
) -> List[BaseTool]:
|
|
"""Load tools based on their name.
|
|
|
|
Args:
|
|
tool_names: name of tools to load.
|
|
llm: An optional language model, may be needed to initialize certain tools.
|
|
callbacks: Optional callback manager or list of callback handlers.
|
|
If not provided, default global callback manager will be used.
|
|
|
|
Returns:
|
|
List of tools.
|
|
"""
|
|
tools = []
|
|
callbacks = _handle_callbacks(
|
|
callback_manager=kwargs.get("callback_manager"), callbacks=callbacks
|
|
)
|
|
for name in tool_names:
|
|
if name == "requests":
|
|
warnings.warn(
|
|
"tool name `requests` is deprecated - "
|
|
"please use `requests_all` or specify the requests method"
|
|
)
|
|
|
|
if name == "requests_all":
|
|
# expand requests into various methods
|
|
requests_method_tools = [
|
|
_tool for _tool in _BASE_TOOLS if _tool.startswith("requests_")
|
|
]
|
|
tool_names.extend(requests_method_tools)
|
|
elif name in _BASE_TOOLS:
|
|
tools.append(_BASE_TOOLS[name]())
|
|
elif name in _LLM_TOOLS:
|
|
if llm is None:
|
|
raise ValueError(f"Tool {name} requires an LLM to be provided")
|
|
tool = _LLM_TOOLS[name](llm)
|
|
tools.append(tool)
|
|
elif name in _EXTRA_LLM_TOOLS:
|
|
if llm is None:
|
|
raise ValueError(f"Tool {name} requires an LLM to be provided")
|
|
_get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name]
|
|
missing_keys = set(extra_keys).difference(kwargs)
|
|
if missing_keys:
|
|
raise ValueError(
|
|
f"Tool {name} requires some parameters that were not "
|
|
f"provided: {missing_keys}"
|
|
)
|
|
sub_kwargs = {k: kwargs[k] for k in extra_keys}
|
|
tool = _get_llm_tool_func(llm=llm, **sub_kwargs)
|
|
tools.append(tool)
|
|
elif name in _EXTRA_OPTIONAL_TOOLS:
|
|
_get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name]
|
|
sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs}
|
|
tool = _get_tool_func(**sub_kwargs)
|
|
tools.append(tool)
|
|
else:
|
|
raise ValueError(f"Got unknown tool {name}")
|
|
if callbacks is not None:
|
|
for tool in tools:
|
|
tool.callbacks = callbacks
|
|
return tools
|
|
|
|
|
|
def get_all_tool_names() -> List[str]:
|
|
"""Get a list of all possible tool names."""
|
|
return (
|
|
list(_BASE_TOOLS)
|
|
+ list(_EXTRA_OPTIONAL_TOOLS)
|
|
+ list(_EXTRA_LLM_TOOLS)
|
|
+ list(_LLM_TOOLS)
|
|
)
|