Files
langchain/docs/docs/how_to/document_loader_markdown.ipynb
Gabe Cornejo e64bfb537f docs: Fix old link to Unstructured package in document_loader_markdown.ipynb (#29175)
Fixed a broken link in `document_loader_markdown.ipynb` to point to the
updated documentation page for the Unstructured package.
Issue: N/A
Dependencies: None
2025-01-13 15:26:01 +00:00

171 lines
5.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "d836a98a-ad14-4bed-af76-e1877f7ef8a4",
"metadata": {},
"source": [
"# How to load Markdown\n",
"\n",
"[Markdown](https://en.wikipedia.org/wiki/Markdown) is a lightweight markup language for creating formatted text using a plain-text editor.\n",
"\n",
"Here we cover how to load `Markdown` documents into LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n",
"\n",
"We will cover:\n",
"\n",
"- Basic usage;\n",
"- Parsing of Markdown into elements such as titles, list items, and text.\n",
"\n",
"LangChain implements an [UnstructuredMarkdownLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html) object which requires the [Unstructured](https://docs.unstructured.io/welcome/) package. First we install it:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c8b147fb-6877-4f7a-b2ee-ee971c7bc662",
"metadata": {},
"outputs": [],
"source": [
"%pip install \"unstructured[md]\" nltk"
]
},
{
"cell_type": "markdown",
"id": "ea8c41f8-a8dc-48cc-b78d-7b3e2427a34c",
"metadata": {},
"source": [
"Basic usage will ingest a Markdown file to a single document. Here we demonstrate on LangChain's readme:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "80c50cc4-7ce9-4418-81b9-29c52c7b3627",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"🦜️🔗 LangChain\n",
"\n",
"⚡ Build context-aware reasoning applications ⚡\n",
"\n",
"Looking for the JS/TS library? Check out LangChain.js.\n",
"\n",
"To help you ship LangChain apps to production faster, check out LangSmith. \n",
"LangSmith is a unified developer platform for building,\n"
]
}
],
"source": [
"from langchain_community.document_loaders import UnstructuredMarkdownLoader\n",
"from langchain_core.documents import Document\n",
"\n",
"markdown_path = \"../../../README.md\"\n",
"loader = UnstructuredMarkdownLoader(markdown_path)\n",
"\n",
"data = loader.load()\n",
"assert len(data) == 1\n",
"assert isinstance(data[0], Document)\n",
"readme_content = data[0].page_content\n",
"print(readme_content[:250])"
]
},
{
"cell_type": "markdown",
"id": "b7560a6e-ca5d-47e1-b176-a9c40e763ff3",
"metadata": {},
"source": [
"## Retain Elements\n",
"\n",
"Under the hood, Unstructured creates different \"elements\" for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying `mode=\"elements\"`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a986bbce-7fd3-41d1-bc47-49f9f57c7cd1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of documents: 66\n",
"\n",
"page_content='🦜️🔗 LangChain' metadata={'source': '../../../README.md', 'category_depth': 0, 'last_modified': '2024-06-28T15:20:01', 'languages': ['eng'], 'filetype': 'text/markdown', 'file_directory': '../../..', 'filename': 'README.md', 'category': 'Title'}\n",
"\n",
"page_content='⚡ Build context-aware reasoning applications ⚡' metadata={'source': '../../../README.md', 'last_modified': '2024-06-28T15:20:01', 'languages': ['eng'], 'parent_id': '200b8a7d0dd03f66e4f13456566d2b3a', 'filetype': 'text/markdown', 'file_directory': '../../..', 'filename': 'README.md', 'category': 'NarrativeText'}\n",
"\n"
]
}
],
"source": [
"loader = UnstructuredMarkdownLoader(markdown_path, mode=\"elements\")\n",
"\n",
"data = loader.load()\n",
"print(f\"Number of documents: {len(data)}\\n\")\n",
"\n",
"for document in data[:2]:\n",
" print(f\"{document}\\n\")"
]
},
{
"cell_type": "markdown",
"id": "117dc6b0-9baa-44a2-9d1d-fc38ecf7a233",
"metadata": {},
"source": [
"Note that in this case we recover three distinct element types:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "75abc139-3ded-4e8e-9f21-d0c8ec40fdfc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'ListItem', 'NarrativeText', 'Title'}\n"
]
}
],
"source": [
"print(set(document.metadata[\"category\"] for document in data))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "223b4c11",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}