mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-03 17:54:10 +00:00 
			
		
		
		
	Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
		
			
				
	
	
		
			146 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Any, Dict, List, Optional
 | 
						|
 | 
						|
from langchain_core.embeddings import Embeddings
 | 
						|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
 | 
						|
from langchain_core.utils import get_from_dict_or_env
 | 
						|
 | 
						|
 | 
						|
class CohereEmbeddings(BaseModel, Embeddings):
 | 
						|
    """Cohere embedding models.
 | 
						|
 | 
						|
    To use, you should have the ``cohere`` python package installed, and the
 | 
						|
    environment variable ``COHERE_API_KEY`` set with your API key or pass it
 | 
						|
    as a named parameter to the constructor.
 | 
						|
 | 
						|
    Example:
 | 
						|
        .. code-block:: python
 | 
						|
 | 
						|
            from langchain_community.embeddings import CohereEmbeddings
 | 
						|
            cohere = CohereEmbeddings(
 | 
						|
                model="embed-english-light-v3.0",
 | 
						|
                cohere_api_key="my-api-key"
 | 
						|
            )
 | 
						|
    """
 | 
						|
 | 
						|
    client: Any  #: :meta private:
 | 
						|
    """Cohere client."""
 | 
						|
    async_client: Any  #: :meta private:
 | 
						|
    """Cohere async client."""
 | 
						|
    model: str = "embed-english-v2.0"
 | 
						|
    """Model name to use."""
 | 
						|
 | 
						|
    truncate: Optional[str] = None
 | 
						|
    """Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")"""
 | 
						|
 | 
						|
    cohere_api_key: Optional[str] = None
 | 
						|
 | 
						|
    max_retries: Optional[int] = None
 | 
						|
    """Maximum number of retries to make when generating."""
 | 
						|
    request_timeout: Optional[float] = None
 | 
						|
    """Timeout in seconds for the Cohere API request."""
 | 
						|
    user_agent: str = "langchain"
 | 
						|
    """Identifier for the application making the request."""
 | 
						|
 | 
						|
    class Config:
 | 
						|
        """Configuration for this pydantic object."""
 | 
						|
 | 
						|
        extra = Extra.forbid
 | 
						|
 | 
						|
    @root_validator()
 | 
						|
    def validate_environment(cls, values: Dict) -> Dict:
 | 
						|
        """Validate that api key and python package exists in environment."""
 | 
						|
        cohere_api_key = get_from_dict_or_env(
 | 
						|
            values, "cohere_api_key", "COHERE_API_KEY"
 | 
						|
        )
 | 
						|
        max_retries = values.get("max_retries")
 | 
						|
        request_timeout = values.get("request_timeout")
 | 
						|
 | 
						|
        try:
 | 
						|
            import cohere
 | 
						|
 | 
						|
            client_name = values["user_agent"]
 | 
						|
            values["client"] = cohere.Client(
 | 
						|
                cohere_api_key,
 | 
						|
                max_retries=max_retries,
 | 
						|
                timeout=request_timeout,
 | 
						|
                client_name=client_name,
 | 
						|
            )
 | 
						|
            values["async_client"] = cohere.AsyncClient(
 | 
						|
                cohere_api_key,
 | 
						|
                max_retries=max_retries,
 | 
						|
                timeout=request_timeout,
 | 
						|
                client_name=client_name,
 | 
						|
            )
 | 
						|
        except ImportError:
 | 
						|
            raise ValueError(
 | 
						|
                "Could not import cohere python package. "
 | 
						|
                "Please install it with `pip install cohere`."
 | 
						|
            )
 | 
						|
        return values
 | 
						|
 | 
						|
    def embed(
 | 
						|
        self, texts: List[str], *, input_type: Optional[str] = None
 | 
						|
    ) -> List[List[float]]:
 | 
						|
        embeddings = self.client.embed(
 | 
						|
            model=self.model,
 | 
						|
            texts=texts,
 | 
						|
            input_type=input_type,
 | 
						|
            truncate=self.truncate,
 | 
						|
        ).embeddings
 | 
						|
        return [list(map(float, e)) for e in embeddings]
 | 
						|
 | 
						|
    async def aembed(
 | 
						|
        self, texts: List[str], *, input_type: Optional[str] = None
 | 
						|
    ) -> List[List[float]]:
 | 
						|
        embeddings = await self.async_client.embed(
 | 
						|
            model=self.model,
 | 
						|
            texts=texts,
 | 
						|
            input_type=input_type,
 | 
						|
            truncate=self.truncate,
 | 
						|
        ).embeddings
 | 
						|
        return [list(map(float, e)) for e in embeddings]
 | 
						|
 | 
						|
    def embed_documents(self, texts: List[str]) -> List[List[float]]:
 | 
						|
        """Embed a list of document texts.
 | 
						|
 | 
						|
        Args:
 | 
						|
            texts: The list of texts to embed.
 | 
						|
 | 
						|
        Returns:
 | 
						|
            List of embeddings, one for each text.
 | 
						|
        """
 | 
						|
        return self.embed(texts, input_type="search_document")
 | 
						|
 | 
						|
    async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
 | 
						|
        """Async call out to Cohere's embedding endpoint.
 | 
						|
 | 
						|
        Args:
 | 
						|
            texts: The list of texts to embed.
 | 
						|
 | 
						|
        Returns:
 | 
						|
            List of embeddings, one for each text.
 | 
						|
        """
 | 
						|
        return await self.aembed(texts, input_type="search_document")
 | 
						|
 | 
						|
    def embed_query(self, text: str) -> List[float]:
 | 
						|
        """Call out to Cohere's embedding endpoint.
 | 
						|
 | 
						|
        Args:
 | 
						|
            text: The text to embed.
 | 
						|
 | 
						|
        Returns:
 | 
						|
            Embeddings for the text.
 | 
						|
        """
 | 
						|
        return self.embed([text], input_type="search_query")[0]
 | 
						|
 | 
						|
    async def aembed_query(self, text: str) -> List[float]:
 | 
						|
        """Async call out to Cohere's embedding endpoint.
 | 
						|
 | 
						|
        Args:
 | 
						|
            text: The text to embed.
 | 
						|
 | 
						|
        Returns:
 | 
						|
            Embeddings for the text.
 | 
						|
        """
 | 
						|
        return (await self.aembed([text], input_type="search_query"))[0]
 |