langchain/docs/docs/how_to/callbacks_attach.ipynb
Eugene Yurtsev 4466caadba
concepts: update llm stub page and re-link (#27567)
Update text llm stub page and re-link content
2024-10-22 23:03:36 -04:00

150 lines
5.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# How to attach callbacks to a runnable\n",
"\n",
":::info Prerequisites\n",
"\n",
"This guide assumes familiarity with the following concepts:\n",
"\n",
"- [Callbacks](/docs/concepts/callbacks)\n",
"- [Custom callback handlers](/docs/how_to/custom_callbacks)\n",
"- [Chaining runnables](/docs/how_to/sequence)\n",
"- [Attach runtime arguments to a Runnable](/docs/how_to/binding)\n",
"\n",
":::\n",
"\n",
"If you are composing a chain of runnables and want to reuse callbacks across multiple executions, you can attach callbacks with the [`.with_config()`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method. This saves you the need to pass callbacks in each time you invoke the chain.\n",
"\n",
":::important\n",
"\n",
"`with_config()` binds a configuration which will be interpreted as **runtime** configuration. So these callbacks will propagate to all child components.\n",
":::\n",
"\n",
"Here's an example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# | output: false\n",
"# | echo: false\n",
"\n",
"%pip install -qU langchain langchain_anthropic\n",
"\n",
"import getpass\n",
"import os\n",
"\n",
"os.environ[\"ANTHROPIC_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Chain RunnableSequence started\n",
"Chain ChatPromptTemplate started\n",
"Chain ended, outputs: messages=[HumanMessage(content='What is 1 + 2?')]\n",
"Chat model started\n",
"Chat model ended, response: generations=[[ChatGeneration(text='1 + 2 = 3', message=AIMessage(content='1 + 2 = 3', response_metadata={'id': 'msg_01NTYMsH9YxkoWsiPYs4Lemn', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 16, 'output_tokens': 13}}, id='run-d6bcfd72-9c94-466d-bac0-f39e456ad6e3-0'))]] llm_output={'id': 'msg_01NTYMsH9YxkoWsiPYs4Lemn', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 16, 'output_tokens': 13}} run=None\n",
"Chain ended, outputs: content='1 + 2 = 3' response_metadata={'id': 'msg_01NTYMsH9YxkoWsiPYs4Lemn', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 16, 'output_tokens': 13}} id='run-d6bcfd72-9c94-466d-bac0-f39e456ad6e3-0'\n"
]
},
{
"data": {
"text/plain": [
"AIMessage(content='1 + 2 = 3', response_metadata={'id': 'msg_01NTYMsH9YxkoWsiPYs4Lemn', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 16, 'output_tokens': 13}}, id='run-d6bcfd72-9c94-466d-bac0-f39e456ad6e3-0')"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from typing import Any, Dict, List\n",
"\n",
"from langchain_anthropic import ChatAnthropic\n",
"from langchain_core.callbacks import BaseCallbackHandler\n",
"from langchain_core.messages import BaseMessage\n",
"from langchain_core.outputs import LLMResult\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"\n",
"class LoggingHandler(BaseCallbackHandler):\n",
" def on_chat_model_start(\n",
" self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs\n",
" ) -> None:\n",
" print(\"Chat model started\")\n",
"\n",
" def on_llm_end(self, response: LLMResult, **kwargs) -> None:\n",
" print(f\"Chat model ended, response: {response}\")\n",
"\n",
" def on_chain_start(\n",
" self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs\n",
" ) -> None:\n",
" print(f\"Chain {serialized.get('name')} started\")\n",
"\n",
" def on_chain_end(self, outputs: Dict[str, Any], **kwargs) -> None:\n",
" print(f\"Chain ended, outputs: {outputs}\")\n",
"\n",
"\n",
"callbacks = [LoggingHandler()]\n",
"llm = ChatAnthropic(model=\"claude-3-sonnet-20240229\")\n",
"prompt = ChatPromptTemplate.from_template(\"What is 1 + {number}?\")\n",
"\n",
"chain = prompt | llm\n",
"\n",
"chain_with_callbacks = chain.with_config(callbacks=callbacks)\n",
"\n",
"chain_with_callbacks.invoke({\"number\": \"2\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The bound callbacks will run for all nested module runs.\n",
"\n",
"## Next steps\n",
"\n",
"You've now learned how to attach callbacks to a chain.\n",
"\n",
"Next, check out the other how-to guides in this section, such as how to [pass callbacks in at runtime](/docs/how_to/callbacks_runtime)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}