mirror of
https://github.com/hwchase17/langchain.git
synced 2025-10-02 10:51:33 +00:00
**Description:** Added aembed_documents() and aembed_query() async functions in HuggingFaceHubEmbeddings class in langchain_community\embeddings\huggingface_hub.py file. It will support to make async calls to HuggingFaceHub's embedding endpoint and generate embeddings asynchronously. Test Cases: Added test_huggingfacehub_embedding_async_documents() and test_huggingfacehub_embedding_async_query() functions in test_huggingface_hub.py file to test the two async functions created in HuggingFaceHubEmbeddings class. Documentation: Updated huggingfacehub.ipynb with steps to install huggingface_hub package and use HuggingFaceHubEmbeddings. **Dependencies:** None, **Twitter handle:** I do not have a Twitter account --------- Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
249 lines
5.1 KiB
Plaintext
249 lines
5.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ed47bb62",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Hugging Face\n",
|
|
"Let's load the Hugging Face Embedding class."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "16b20335-da1d-46ba-aa23-fbf3e2c6fe60",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%pip install --upgrade --quiet langchain sentence_transformers"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "861521a9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain_community.embeddings import HuggingFaceEmbeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "ff9be586",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"embeddings = HuggingFaceEmbeddings()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "d0a98ae9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"text = \"This is a test document.\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "5d6c682b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"query_result = embeddings.embed_query(text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "b57b8ce9-ef7d-4e63-979e-aa8763d1f9a8",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[-0.04895168915390968, -0.03986193612217903, -0.021562768146395683]"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"query_result[:3]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "bb5e74c0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"doc_result = embeddings.embed_documents([text])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "92019ef1-5d30-4985-b4e6-c0d98bdfe265",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Hugging Face Inference API\n",
|
|
"We can also access embedding models via the Hugging Face Inference API, which does not require us to install ``sentence_transformers`` and download models locally."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "66f5c6ba-1446-43e1-b012-800d17cef300",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Enter your HF Inference API Key:\n",
|
|
"\n",
|
|
" ········\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import getpass\n",
|
|
"\n",
|
|
"inference_api_key = getpass.getpass(\"Enter your HF Inference API Key:\\n\\n\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "d0623c1f-cd82-4862-9bce-3655cb9b66ac",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[-0.038338541984558105, 0.1234646737575531, -0.028642963618040085]"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings\n",
|
|
"\n",
|
|
"embeddings = HuggingFaceInferenceAPIEmbeddings(\n",
|
|
" api_key=inference_api_key, model_name=\"sentence-transformers/all-MiniLM-l6-v2\"\n",
|
|
")\n",
|
|
"\n",
|
|
"query_result = embeddings.embed_query(text)\n",
|
|
"query_result[:3]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "19ef2d31",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Hugging Face Hub\n",
|
|
"We can also generate embeddings locally via the Hugging Face Hub package, which requires us to install ``huggingface_hub ``"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "39e85945",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install huggingface_hub"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c78a2779",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain_community.embeddings import HuggingFaceHubEmbeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "116f3ce7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"embeddings = HuggingFaceHubEmbeddings()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d6f97ee9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"text = \"This is a test document.\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "fb6adc67",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"query_result = embeddings.embed_query(text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1f42c311",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"query_result[:3]"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "poetry-venv",
|
|
"language": "python",
|
|
"name": "poetry-venv"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|