Files
langchain/docs/docs/integrations/text_embedding/text_embeddings_inference.ipynb
Aaron Jimenez fcf6213c22 docs: Fix link to HF TEI in text_embeddings_inference.ipynb (#18682)
- [ ] **PR title:** docs: Fix link to HF TEI in
text_embeddings_inference.ipynb
 
- [ ] **PR message:**

- **Description:** Fix the link to [Hugging Face Text Embeddings
Inference
(TEI)](https://huggingface.co/docs/text-embeddings-inference/index) in
text_embeddings_inference.ipynb
   - **Issue:** Fix #18576
2024-03-07 19:38:39 -08:00

171 lines
3.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "ceabf1eb-ca96-4791-90ad-e9acb31edf5c",
"metadata": {},
"source": [
"# Text Embeddings Inference\n",
"\n",
">[Hugging Face Text Embeddings Inference (TEI)](https://huggingface.co/docs/text-embeddings-inference/index) is a toolkit for deploying and serving open-source\n",
"> text embeddings and sequence classification models. `TEI` enables high-performance extraction for the most popular models,\n",
">including `FlagEmbedding`, `Ember`, `GTE` and `E5`.\n",
"\n",
"To use it within langchain, first install `huggingface-hub`."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "579f0677-aa06-4ad8-a816-3520c8d6923c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"%pip install --upgrade huggingface-hub"
]
},
{
"cell_type": "markdown",
"id": "7c6b1015-bc3f-4283-93d5-11387be1b98d",
"metadata": {},
"source": [
"Then expose an embedding model using TEI. For instance, using Docker, you can serve `BAAI/bge-large-en-v1.5` as follows:\n",
"\n",
"```bash\n",
"model=BAAI/bge-large-en-v1.5\n",
"revision=refs/pr/5\n",
"volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run\n",
"\n",
"docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.6 --model-id $model --revision $revision\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "48eebefc-a631-48dd-9bde-4a987f81aa20",
"metadata": {},
"source": [
"Finally, instantiate the client and embed your texts."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "22b09777-5ba3-4fbe-81cf-a702a55df9c4",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_community.embeddings import HuggingFaceHubEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f9a92970-16f4-458c-b186-2a83e9f7d840",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"embeddings = HuggingFaceHubEmbeddings(model=\"http://localhost:8080\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "42105438-9fee-460a-9c52-b7c595722758",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"text = \"What is deep learning?\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "20167762-0988-4205-bbd4-1f20fd9dd247",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[0.018113142, 0.00302585, -0.049911194]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query_result = embeddings.embed_query(text)\n",
"query_result[:3]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "54b87cf6-86ad-46f5-b2cd-17eb43cb4d0b",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "6fba8be9-fabf-4972-8334-aa56ed9893e1",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[0.018113142, 0.00302585, -0.049911194]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"doc_result[0][:3]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}