Files
langchain/docs/docs/integrations/text_embedding/yandex.ipynb
Erick Friis 7bc100fd43 docs: integration package pip installs (#15762)
More than 300 files - will fail check_diff. Will merge after Vercel
deploy succeeds

Still occurrences that need changing - will update more later
2024-01-09 11:13:10 -08:00

156 lines
3.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# YandexGPT\n",
"\n",
"This notebook goes over how to use Langchain with [YandexGPT](https://cloud.yandex.com/en/services/yandexgpt) embeddings models.\n",
"\n",
"To use, you should have the `yandexcloud` python package installed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade --quiet yandexcloud"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, you should [create service account](https://cloud.yandex.com/en/docs/iam/operations/sa/create) with the `ai.languageModels.user` role.\n",
"\n",
"Next, you have two authentication options:\n",
"- [IAM token](https://cloud.yandex.com/en/docs/iam/operations/iam-token/create-for-sa).\n",
" You can specify the token in a constructor parameter `iam_token` or in an environment variable `YC_IAM_TOKEN`.\n",
"- [API key](https://cloud.yandex.com/en/docs/iam/operations/api-key/create)\n",
" You can specify the key in a constructor parameter `api_key` or in an environment variable `YC_API_KEY`.\n",
"\n",
"To specify the model you can use `model_uri` parameter, see [the documentation](https://cloud.yandex.com/en/docs/yandexgpt/concepts/models#yandexgpt-embeddings) for more details.\n",
"\n",
"By default, the latest version of `text-search-query` is used from the folder specified in the parameter `folder_id` or `YC_FOLDER_ID` environment variable."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.embeddings.yandex import YandexGPTEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"embeddings = YandexGPTEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[-0.021392822265625,\n",
" 0.096435546875,\n",
" -0.046966552734375,\n",
" -0.0183258056640625,\n",
" -0.00555419921875]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query_result[:5]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[-0.021392822265625,\n",
" 0.096435546875,\n",
" -0.046966552734375,\n",
" -0.0183258056640625,\n",
" -0.00555419921875]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"doc_result[0][:5]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 4
}