Files
langchain/docs/docs/integrations/text_embedding/gigachat.ipynb
Mikelarg dac2e0165a community[minor]: Added GigaChat Embeddings support + updated previous GigaChat integration (#19516)
- **Description:** Added integration with
[GigaChat](https://developers.sber.ru/portal/products/gigachat)
embeddings. Also added support for extra fields in GigaChat LLM and
fixed docs.
2024-03-25 16:08:37 -07:00

117 lines
2.5 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"source": [
"# GigaChat\n",
"This notebook shows how to use LangChain with [GigaChat embeddings](https://developers.sber.ru/portal/products/gigachat).\n",
"To use you need to install ```gigachat``` python package."
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%pip install --upgrade --quiet gigachat"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"To get GigaChat credentials you need to [create account](https://developers.sber.ru/studio/login) and [get access to API](https://developers.sber.ru/docs/ru/gigachat/individuals-quickstart)\n",
"\n",
"## Example"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"os.environ[\"GIGACHAT_CREDENTIALS\"] = getpass()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"outputs": [],
"source": [
"from langchain_community.embeddings import GigaChatEmbeddings\n",
"\n",
"embeddings = GigaChatEmbeddings(verify_ssl_certs=False, scope=\"GIGACHAT_API_PERS\")"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [],
"source": [
"query_result = embeddings.embed_query(\"The quick brown fox jumps over the lazy dog\")"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 8,
"outputs": [
{
"data": {
"text/plain": "[0.8398333191871643,\n -0.14180311560630798,\n -0.6161925792694092,\n -0.17103666067123413,\n 1.2884578704833984]"
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query_result[:5]"
],
"metadata": {
"collapsed": false
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}