Files
langchain/docs/docs/integrations/text_embedding/together.ipynb
Erick Friis 7bc100fd43 docs: integration package pip installs (#15762)
More than 300 files - will fail check_diff. Will merge after Vercel
deploy succeeds

Still occurrences that need changing - will update more later
2024-01-09 11:13:10 -08:00

135 lines
2.8 KiB
Plaintext

{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Together AI\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"# TogetherEmbeddings\n",
"\n",
"This notebook covers how to get started with open source embedding models hosted in the Together AI API.\n",
"\n",
"## Installation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4c3bef91",
"metadata": {},
"outputs": [],
"source": [
"# install package\n",
"%pip install --upgrade --quiet langchain-together"
]
},
{
"cell_type": "markdown",
"id": "2b4f3e15",
"metadata": {},
"source": [
"## Environment Setup\n",
"\n",
"Make sure to set the following environment variables:\n",
"\n",
"- `TOGETHER_API_KEY`\n",
"\n",
"## Usage\n",
"\n",
"First, select a supported model from [this list](https://docs.together.ai/docs/embedding-models). In the following example, we will use `togethercomputer/m2-bert-80M-8k-retrieval`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62e0dbc3",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_together.embeddings import TogetherEmbeddings\n",
"\n",
"embeddings = TogetherEmbeddings(model=\"togethercomputer/m2-bert-80M-8k-retrieval\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "12fcfb4b",
"metadata": {},
"outputs": [],
"source": [
"embeddings.embed_query(\"My query to look up\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1f2e6104",
"metadata": {},
"outputs": [],
"source": [
"embeddings.embed_documents(\n",
" [\"This is a content of the document\", \"This is another document\"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "46739f68",
"metadata": {},
"outputs": [],
"source": [
"# async embed query\n",
"await embeddings.aembed_query(\"My query to look up\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e48632ea",
"metadata": {},
"outputs": [],
"source": [
"# async embed documents\n",
"await embeddings.aembed_documents(\n",
" [\"This is a content of the document\", \"This is another document\"]\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}