Files
langchain/libs/core
Copilot d27211cfa7 fix(core): context preservation in shielded async callbacks (#32163)
The `@shielded` decorator in async callback managers was not preserving
context variables, breaking OpenTelemetry instrumentation and other
context-dependent functionality.

## Problem

When using async callbacks with the `@shielded` decorator (applied to
methods like `on_llm_end`, `on_chain_end`, etc.), context variables were
not being preserved across the shield boundary. This caused issues with:

- OpenTelemetry span context propagation
- Other instrumentation that relies on context variables
- Inconsistent context behavior between sync and async execution

The issue was reproducible with:

```python
from contextvars import copy_context
import asyncio
from langgraph.graph import StateGraph

# Sync case: context remains consistent
print("SYNC")
print(copy_context())  # Same object
graph.invoke({"result": "init"})
print(copy_context())  # Same object

# Async case: context was inconsistent (before fix)
print("ASYNC") 
asyncio.run(graph.ainvoke({"result": "init"}))
print(copy_context())  # Different object than expected
```

## Root Cause

The original `shielded` decorator implementation:

```python
async def wrapped(*args: Any, **kwargs: Any) -> Any:
    return await asyncio.shield(func(*args, **kwargs))
```

Used `asyncio.shield()` directly without preserving the current
execution context, causing context variables to be lost.

## Solution

Modified the `shielded` decorator to:

1. Capture the current context using `copy_context()`
2. Create a task with explicit context using `asyncio.create_task(coro,
context=ctx)` for Python 3.11+
3. Shield the context-aware task
4. Fallback to regular task creation for Python < 3.11

```python
async def wrapped(*args: Any, **kwargs: Any) -> Any:
    # Capture the current context to preserve context variables
    ctx = copy_context()
    coro = func(*args, **kwargs)
    
    try:
        # Create a task with the captured context to preserve context variables
        task = asyncio.create_task(coro, context=ctx)
        return await asyncio.shield(task)
    except TypeError:
        # Python < 3.11 fallback
        task = asyncio.create_task(coro)
        return await asyncio.shield(task)
```

## Testing

- Added comprehensive test
`test_shielded_callback_context_preservation()` that validates context
variables are preserved across shielded callback boundaries
- Verified the fix resolves the original LangGraph context consistency
issue
- Confirmed all existing callback manager tests still pass
- Validated OpenTelemetry-like instrumentation scenarios work correctly

The fix is minimal, maintains backward compatibility, and ensures proper
context preservation for both modern Python versions and older ones.

Fixes #31398.

<!-- START COPILOT CODING AGENT TIPS -->
---

💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey.alchemer.com/s3/8343779/Copilot-Coding-agent) to
start the survey.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: mdrxy <61371264+mdrxy@users.noreply.github.com>
Co-authored-by: Mason Daugherty <github@mdrxy.com>
Co-authored-by: Mason Daugherty <mason@langchain.dev>
2025-11-07 13:09:47 -05:00
..
2025-05-15 15:43:57 -04:00
2025-11-06 23:50:46 -05:00

🦜🍎 LangChain Core

PyPI - Version PyPI - License PyPI - Downloads Twitter

Looking for the JS/TS version? Check out LangChain.js.

To help you ship LangChain apps to production faster, check out LangSmith. LangSmith is a unified developer platform for building, testing, and monitoring LLM applications.

Quick Install

pip install langchain-core

🤔 What is this?

LangChain Core contains the base abstractions that power the LangChain ecosystem.

These abstractions are designed to be as modular and simple as possible.

The benefit of having these abstractions is that any provider can implement the required interface and then easily be used in the rest of the LangChain ecosystem.

⛰️ Why build on top of LangChain Core?

The LangChain ecosystem is built on top of langchain-core. Some of the benefits:

  • Modularity: We've designed Core around abstractions that are independent of each other, and not tied to any specific model provider.
  • Stability: We are committed to a stable versioning scheme, and will communicate any breaking changes with advance notice and version bumps.
  • Battle-tested: Core components have the largest install base in the LLM ecosystem, and are used in production by many companies.

📖 Documentation

For full documentation, see the API reference.

📕 Releases & Versioning

See our Releases and Versioning policies.

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see the Contributing Guide.