mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-11 10:06:05 +00:00
**Description:** Spell check fixes for docs, comments, and a couple of strings. No code change e.g. variable names. **Issue:** none **Dependencies:** none **Twitter handle:** hmartin
123 lines
4.3 KiB
Python
123 lines
4.3 KiB
Python
import os
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
|
|
|
|
|
class AscendEmbeddings(Embeddings, BaseModel):
|
|
"""
|
|
Ascend NPU accelerate Embedding model
|
|
|
|
Please ensure that you have installed CANN and torch_npu.
|
|
|
|
Example:
|
|
|
|
from langchain_community.embeddings import AscendEmbeddings
|
|
model = AscendEmbeddings(model_path=<path_to_model>,
|
|
device_id=0,
|
|
query_instruction="Represent this sentence for searching relevant passages: "
|
|
)
|
|
"""
|
|
|
|
"""model path"""
|
|
model_path: str
|
|
"""Ascend NPU device id."""
|
|
device_id: int = 0
|
|
"""Unstruntion to used for embedding query."""
|
|
query_instruction: str = ""
|
|
"""Unstruntion to used for embedding document."""
|
|
document_instruction: str = ""
|
|
use_fp16: bool = True
|
|
pooling_method: Optional[str] = "cls"
|
|
model: Any
|
|
tokenizer: Any
|
|
|
|
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
|
super().__init__(*args, **kwargs)
|
|
try:
|
|
from transformers import AutoModel, AutoTokenizer
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import transformers, please install with "
|
|
"`pip install -U transformers`."
|
|
) from e
|
|
try:
|
|
self.model = AutoModel.from_pretrained(self.model_path).npu().eval()
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
|
|
except Exception as e:
|
|
raise Exception(
|
|
f"Failed to load model [self.model_path], due to following error:{e}"
|
|
)
|
|
|
|
if self.use_fp16:
|
|
self.model.half()
|
|
self.encode([f"warmup {i} times" for i in range(10)])
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
if "model_path" not in values:
|
|
raise ValueError("model_path is required")
|
|
if not os.access(values["model_path"], os.F_OK):
|
|
raise FileNotFoundError(
|
|
f"Unable to find valid model path in [{values['model_path']}]"
|
|
)
|
|
try:
|
|
import torch_npu
|
|
except ImportError:
|
|
raise ModuleNotFoundError("torch_npu not found, please install torch_npu")
|
|
except Exception as e:
|
|
raise e
|
|
try:
|
|
torch_npu.npu.set_device(values["device_id"])
|
|
except Exception as e:
|
|
raise Exception(f"set device failed due to {e}")
|
|
return values
|
|
|
|
def encode(self, sentences: Any) -> Any:
|
|
inputs = self.tokenizer(
|
|
sentences,
|
|
padding=True,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
max_length=512,
|
|
)
|
|
try:
|
|
import torch
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import torch, please install with " "`pip install -U torch`."
|
|
) from e
|
|
last_hidden_state = self.model(
|
|
inputs.input_ids.npu(), inputs.attention_mask.npu(), return_dict=True
|
|
).last_hidden_state
|
|
tmp = self.pooling(last_hidden_state, inputs["attention_mask"].npu())
|
|
embeddings = torch.nn.functional.normalize(tmp, dim=-1)
|
|
return embeddings.cpu().detach().numpy()
|
|
|
|
def pooling(self, last_hidden_state: Any, attention_mask: Any = None) -> Any:
|
|
try:
|
|
import torch
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import torch, please install with " "`pip install -U torch`."
|
|
) from e
|
|
if self.pooling_method == "cls":
|
|
return last_hidden_state[:, 0]
|
|
elif self.pooling_method == "mean":
|
|
s = torch.sum(
|
|
last_hidden_state * attention_mask.unsqueeze(-1).float(), dim=-1
|
|
)
|
|
d = attention_mask.sum(dim=1, keepdim=True).float()
|
|
return s / d
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Pooling method [{self.pooling_method}] not implemented"
|
|
)
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
return self.encode([self.document_instruction + text for text in texts])
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
return self.encode([self.query_instruction + text])[0]
|