mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-11 01:56:12 +00:00
Upgrade to using a literal for specifying the extra which is the recommended approach in pydantic 2. This works correctly also in pydantic v1. ```python from pydantic.v1 import BaseModel class Foo(BaseModel, extra="forbid"): x: int Foo(x=5, y=1) ``` And ```python from pydantic.v1 import BaseModel class Foo(BaseModel): x: int class Config: extra = "forbid" Foo(x=5, y=1) ``` ## Enum -> literal using grit pattern: ``` engine marzano(0.1) language python or { `extra=Extra.allow` => `extra="allow"`, `extra=Extra.forbid` => `extra="forbid"`, `extra=Extra.ignore` => `extra="ignore"` } ``` Resorted attributes in config and removed doc-string in case we will need to deal with going back and forth between pydantic v1 and v2 during the 0.3 release. (This will reduce merge conflicts.) ## Sort attributes in Config: ``` engine marzano(0.1) language python function sort($values) js { return $values.text.split(',').sort().join("\n"); } class_definition($name, $body) as $C where { $name <: `Config`, $body <: block($statements), $values = [], $statements <: some bubble($values) assignment() as $A where { $values += $A }, $body => sort($values), } ```
93 lines
2.7 KiB
Python
93 lines
2.7 KiB
Python
from typing import Any, Dict, List
|
|
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
DEFAULT_MODEL_NAME = "@cf/baai/bge-base-en-v1.5"
|
|
|
|
|
|
class CloudflareWorkersAIEmbeddings(BaseModel, Embeddings):
|
|
"""Cloudflare Workers AI embedding model.
|
|
|
|
To use, you need to provide an API token and
|
|
account ID to access Cloudflare Workers AI.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import CloudflareWorkersAIEmbeddings
|
|
|
|
account_id = "my_account_id"
|
|
api_token = "my_secret_api_token"
|
|
model_name = "@cf/baai/bge-small-en-v1.5"
|
|
|
|
cf = CloudflareWorkersAIEmbeddings(
|
|
account_id=account_id,
|
|
api_token=api_token,
|
|
model_name=model_name
|
|
)
|
|
"""
|
|
|
|
api_base_url: str = "https://api.cloudflare.com/client/v4/accounts"
|
|
account_id: str
|
|
api_token: str
|
|
model_name: str = DEFAULT_MODEL_NAME
|
|
batch_size: int = 50
|
|
strip_new_lines: bool = True
|
|
headers: Dict[str, str] = {"Authorization": "Bearer "}
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
"""Initialize the Cloudflare Workers AI client."""
|
|
super().__init__(**kwargs)
|
|
|
|
self.headers = {"Authorization": f"Bearer {self.api_token}"}
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Compute doc embeddings using Cloudflare Workers AI.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
if self.strip_new_lines:
|
|
texts = [text.replace("\n", " ") for text in texts]
|
|
|
|
batches = [
|
|
texts[i : i + self.batch_size]
|
|
for i in range(0, len(texts), self.batch_size)
|
|
]
|
|
embeddings = []
|
|
|
|
for batch in batches:
|
|
response = requests.post(
|
|
f"{self.api_base_url}/{self.account_id}/ai/run/{self.model_name}",
|
|
headers=self.headers,
|
|
json={"text": batch},
|
|
)
|
|
embeddings.extend(response.json()["result"]["data"])
|
|
|
|
return embeddings
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Compute query embeddings using Cloudflare Workers AI.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
text = text.replace("\n", " ") if self.strip_new_lines else text
|
|
response = requests.post(
|
|
f"{self.api_base_url}/{self.account_id}/ai/run/{self.model_name}",
|
|
headers=self.headers,
|
|
json={"text": [text]},
|
|
)
|
|
return response.json()["result"]["data"][0]
|