mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-11 01:56:12 +00:00
Upgrade to using a literal for specifying the extra which is the recommended approach in pydantic 2. This works correctly also in pydantic v1. ```python from pydantic.v1 import BaseModel class Foo(BaseModel, extra="forbid"): x: int Foo(x=5, y=1) ``` And ```python from pydantic.v1 import BaseModel class Foo(BaseModel): x: int class Config: extra = "forbid" Foo(x=5, y=1) ``` ## Enum -> literal using grit pattern: ``` engine marzano(0.1) language python or { `extra=Extra.allow` => `extra="allow"`, `extra=Extra.forbid` => `extra="forbid"`, `extra=Extra.ignore` => `extra="ignore"` } ``` Resorted attributes in config and removed doc-string in case we will need to deal with going back and forth between pydantic v1 and v2 during the 0.3 release. (This will reduce merge conflicts.) ## Sort attributes in Config: ``` engine marzano(0.1) language python function sort($values) js { return $values.text.split(',').sort().join("\n"); } class_definition($name, $body) as $C where { $name <: `Config`, $body <: block($statements), $values = [], $statements <: some bubble($values) assignment() as $A where { $values += $A }, $body => sort($values), } ```
100 lines
3.6 KiB
Python
100 lines
3.6 KiB
Python
from typing import Any, Callable, List
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from langchain_community.llms.self_hosted import SelfHostedPipeline
|
|
|
|
|
|
def _embed_documents(pipeline: Any, *args: Any, **kwargs: Any) -> List[List[float]]:
|
|
"""Inference function to send to the remote hardware.
|
|
|
|
Accepts a sentence_transformer model_id and
|
|
returns a list of embeddings for each document in the batch.
|
|
"""
|
|
return pipeline(*args, **kwargs)
|
|
|
|
|
|
class SelfHostedEmbeddings(SelfHostedPipeline, Embeddings):
|
|
"""Custom embedding models on self-hosted remote hardware.
|
|
|
|
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
|
|
and Lambda, as well as servers specified
|
|
by IP address and SSH credentials (such as on-prem, or another
|
|
cloud like Paperspace, Coreweave, etc.).
|
|
|
|
To use, you should have the ``runhouse`` python package installed.
|
|
|
|
Example using a model load function:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import SelfHostedEmbeddings
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
import runhouse as rh
|
|
|
|
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
|
|
def get_pipeline():
|
|
model_id = "facebook/bart-large"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
return pipeline("feature-extraction", model=model, tokenizer=tokenizer)
|
|
embeddings = SelfHostedEmbeddings(
|
|
model_load_fn=get_pipeline,
|
|
hardware=gpu
|
|
model_reqs=["./", "torch", "transformers"],
|
|
)
|
|
Example passing in a pipeline path:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import SelfHostedHFEmbeddings
|
|
import runhouse as rh
|
|
from transformers import pipeline
|
|
|
|
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
|
|
pipeline = pipeline(model="bert-base-uncased", task="feature-extraction")
|
|
rh.blob(pickle.dumps(pipeline),
|
|
path="models/pipeline.pkl").save().to(gpu, path="models")
|
|
embeddings = SelfHostedHFEmbeddings.from_pipeline(
|
|
pipeline="models/pipeline.pkl",
|
|
hardware=gpu,
|
|
model_reqs=["./", "torch", "transformers"],
|
|
)
|
|
"""
|
|
|
|
inference_fn: Callable = _embed_documents
|
|
"""Inference function to extract the embeddings on the remote hardware."""
|
|
inference_kwargs: Any = None
|
|
"""Any kwargs to pass to the model's inference function."""
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Compute doc embeddings using a HuggingFace transformer model.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.s
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
texts = list(map(lambda x: x.replace("\n", " "), texts))
|
|
embeddings = self.client(self.pipeline_ref, texts)
|
|
if not isinstance(embeddings, list):
|
|
return embeddings.tolist()
|
|
return embeddings
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Compute query embeddings using a HuggingFace transformer model.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
text = text.replace("\n", " ")
|
|
embeddings = self.client(self.pipeline_ref, text)
|
|
if not isinstance(embeddings, list):
|
|
return embeddings.tolist()
|
|
return embeddings
|