mirror of
https://github.com/hwchase17/langchain.git
synced 2025-05-11 01:56:12 +00:00
Upgrade to using a literal for specifying the extra which is the recommended approach in pydantic 2. This works correctly also in pydantic v1. ```python from pydantic.v1 import BaseModel class Foo(BaseModel, extra="forbid"): x: int Foo(x=5, y=1) ``` And ```python from pydantic.v1 import BaseModel class Foo(BaseModel): x: int class Config: extra = "forbid" Foo(x=5, y=1) ``` ## Enum -> literal using grit pattern: ``` engine marzano(0.1) language python or { `extra=Extra.allow` => `extra="allow"`, `extra=Extra.forbid` => `extra="forbid"`, `extra=Extra.ignore` => `extra="ignore"` } ``` Resorted attributes in config and removed doc-string in case we will need to deal with going back and forth between pydantic v1 and v2 during the 0.3 release. (This will reduce merge conflicts.) ## Sort attributes in Config: ``` engine marzano(0.1) language python function sort($values) js { return $values.text.split(',').sort().join("\n"); } class_definition($name, $body) as $C where { $name <: `Config`, $body <: block($statements), $values = [], $statements <: some bubble($values) assignment() as $A where { $values += $A }, $body => sort($values), } ```
157 lines
5.1 KiB
Python
157 lines
5.1 KiB
Python
from typing import Any, Dict, List, Optional, cast
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import BaseModel, SecretStr
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
|
|
|
|
|
|
class AI21PenaltyData(BaseModel):
|
|
"""Parameters for AI21 penalty data."""
|
|
|
|
scale: int = 0
|
|
applyToWhitespaces: bool = True
|
|
applyToPunctuations: bool = True
|
|
applyToNumbers: bool = True
|
|
applyToStopwords: bool = True
|
|
applyToEmojis: bool = True
|
|
|
|
|
|
class AI21(LLM):
|
|
"""AI21 large language models.
|
|
|
|
To use, you should have the environment variable ``AI21_API_KEY``
|
|
set with your API key or pass it as a named parameter to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import AI21
|
|
ai21 = AI21(ai21_api_key="my-api-key", model="j2-jumbo-instruct")
|
|
"""
|
|
|
|
model: str = "j2-jumbo-instruct"
|
|
"""Model name to use."""
|
|
|
|
temperature: float = 0.7
|
|
"""What sampling temperature to use."""
|
|
|
|
maxTokens: int = 256
|
|
"""The maximum number of tokens to generate in the completion."""
|
|
|
|
minTokens: int = 0
|
|
"""The minimum number of tokens to generate in the completion."""
|
|
|
|
topP: float = 1.0
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
|
|
presencePenalty: AI21PenaltyData = AI21PenaltyData()
|
|
"""Penalizes repeated tokens."""
|
|
|
|
countPenalty: AI21PenaltyData = AI21PenaltyData()
|
|
"""Penalizes repeated tokens according to count."""
|
|
|
|
frequencyPenalty: AI21PenaltyData = AI21PenaltyData()
|
|
"""Penalizes repeated tokens according to frequency."""
|
|
|
|
numResults: int = 1
|
|
"""How many completions to generate for each prompt."""
|
|
|
|
logitBias: Optional[Dict[str, float]] = None
|
|
"""Adjust the probability of specific tokens being generated."""
|
|
|
|
ai21_api_key: Optional[SecretStr] = None
|
|
|
|
stop: Optional[List[str]] = None
|
|
|
|
base_url: Optional[str] = None
|
|
"""Base url to use, if None decides based on model name."""
|
|
|
|
class Config:
|
|
extra = "forbid"
|
|
|
|
@pre_init
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key exists in environment."""
|
|
ai21_api_key = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "ai21_api_key", "AI21_API_KEY")
|
|
)
|
|
values["ai21_api_key"] = ai21_api_key
|
|
return values
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling AI21 API."""
|
|
return {
|
|
"temperature": self.temperature,
|
|
"maxTokens": self.maxTokens,
|
|
"minTokens": self.minTokens,
|
|
"topP": self.topP,
|
|
"presencePenalty": self.presencePenalty.dict(),
|
|
"countPenalty": self.countPenalty.dict(),
|
|
"frequencyPenalty": self.frequencyPenalty.dict(),
|
|
"numResults": self.numResults,
|
|
"logitBias": self.logitBias,
|
|
}
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {**{"model": self.model}, **self._default_params}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "ai21"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to AI21's complete endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = ai21("Tell me a joke.")
|
|
"""
|
|
if self.stop is not None and stop is not None:
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
elif self.stop is not None:
|
|
stop = self.stop
|
|
elif stop is None:
|
|
stop = []
|
|
if self.base_url is not None:
|
|
base_url = self.base_url
|
|
else:
|
|
if self.model in ("j1-grande-instruct",):
|
|
base_url = "https://api.ai21.com/studio/v1/experimental"
|
|
else:
|
|
base_url = "https://api.ai21.com/studio/v1"
|
|
params = {**self._default_params, **kwargs}
|
|
self.ai21_api_key = cast(SecretStr, self.ai21_api_key)
|
|
response = requests.post(
|
|
url=f"{base_url}/{self.model}/complete",
|
|
headers={"Authorization": f"Bearer {self.ai21_api_key.get_secret_value()}"},
|
|
json={"prompt": prompt, "stopSequences": stop, **params},
|
|
)
|
|
if response.status_code != 200:
|
|
optional_detail = response.json().get("error")
|
|
raise ValueError(
|
|
f"AI21 /complete call failed with status code {response.status_code}."
|
|
f" Details: {optional_detail}"
|
|
)
|
|
response_json = response.json()
|
|
return response_json["completions"][0]["data"]["text"]
|