mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-03 17:54:10 +00:00 
			
		
		
		
	This PR: - Increases `qdrant-client` version to 1.0.4 - Introduces custom content and metadata keys (as requested in #1087) - Moves all the `QdrantClient` parameters into the method parameters to simplify code completion
		
			
				
	
	
		
			139 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "052dfe58",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "# Fake LLM\n",
 | 
						|
    "We expose a fake LLM class that can be used for testing. This allows you to mock out calls to the LLM and simulate what would happen if the LLM responded in a certain way.\n",
 | 
						|
    "\n",
 | 
						|
    "In this notebook we go over how to use this.\n",
 | 
						|
    "\n",
 | 
						|
    "We start this with using the FakeLLM in an agent."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 1,
 | 
						|
   "id": "ef97ac4d",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "from langchain.llms.fake import FakeListLLM"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 2,
 | 
						|
   "id": "9a0a160f",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "from langchain.agents import load_tools\n",
 | 
						|
    "from langchain.agents import initialize_agent"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 3,
 | 
						|
   "id": "b272258c",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "tools = load_tools([\"python_repl\"])"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 16,
 | 
						|
   "id": "94096c4c",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "responses=[\n",
 | 
						|
    "    \"Action: Python REPL\\nAction Input: print(2 + 2)\",\n",
 | 
						|
    "    \"Final Answer: 4\"\n",
 | 
						|
    "]\n",
 | 
						|
    "llm = FakeListLLM(responses=responses)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 17,
 | 
						|
   "id": "da226d02",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "agent = initialize_agent(tools, llm, agent=\"zero-shot-react-description\", verbose=True)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 18,
 | 
						|
   "id": "44c13426",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "\n",
 | 
						|
      "\n",
 | 
						|
      "\u001B[1m> Entering new AgentExecutor chain...\u001B[0m\n",
 | 
						|
      "\u001B[32;1m\u001B[1;3mAction: Python REPL\n",
 | 
						|
      "Action Input: print(2 + 2)\u001B[0m\n",
 | 
						|
      "Observation: \u001B[36;1m\u001B[1;3m4\n",
 | 
						|
      "\u001B[0m\n",
 | 
						|
      "Thought:\u001B[32;1m\u001B[1;3mFinal Answer: 4\u001B[0m\n",
 | 
						|
      "\n",
 | 
						|
      "\u001B[1m> Finished chain.\u001B[0m\n"
 | 
						|
     ]
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "text/plain": [
 | 
						|
       "'4'"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "execution_count": 18,
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "execute_result"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "agent.run(\"whats 2 + 2\")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "814c2858",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": []
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "Python 3 (ipykernel)",
 | 
						|
   "language": "python",
 | 
						|
   "name": "python3"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.9.1"
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 5
 | 
						|
}
 |