mirror of
				https://github.com/hwchase17/langchain.git
				synced 2025-11-04 02:03:32 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			344 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			344 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "984169ca",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "# Agent Benchmarking: Search + Calculator\n",
 | 
						|
    "\n",
 | 
						|
    "Here we go over how to benchmark performance of an agent on tasks where it has access to a calculator and a search tool.\n",
 | 
						|
    "\n",
 | 
						|
    "It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See [here](https://langchain.readthedocs.io/en/latest/tracing.html) for an explanation of what tracing is and how to set it up."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 1,
 | 
						|
   "id": "46bf9205",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "# Comment this out if you are NOT using tracing\n",
 | 
						|
    "import os\n",
 | 
						|
    "os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\""
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "8a16b75d",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## Loading the data\n",
 | 
						|
    "First, let's load the data."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 2,
 | 
						|
   "id": "5b2d5e98",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stderr",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "Found cached dataset json (/Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--agent-search-calculator-8a025c0ce5fb99d2/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51)\n"
 | 
						|
     ]
 | 
						|
    },
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "application/vnd.jupyter.widget-view+json": {
 | 
						|
       "model_id": "3a275586643f4ccfba1a8d54be28c351",
 | 
						|
       "version_major": 2,
 | 
						|
       "version_minor": 0
 | 
						|
      },
 | 
						|
      "text/plain": [
 | 
						|
       "  0%|          | 0/1 [00:00<?, ?it/s]"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "display_data"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "from langchain.evaluation.loading import load_dataset\n",
 | 
						|
    "dataset = load_dataset(\"agent-search-calculator\")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "4ab6a716",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## Setting up a chain\n",
 | 
						|
    "Now we need to load an agent capable of answering these questions."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 6,
 | 
						|
   "id": "c18680b5",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "from langchain.llms import OpenAI\n",
 | 
						|
    "from langchain.chains import LLMMathChain\n",
 | 
						|
    "from langchain.agents import initialize_agent, Tool, load_tools\n",
 | 
						|
    "\n",
 | 
						|
    "tools = load_tools(['serpapi', 'llm-math'], llm=OpenAI(temperature=0))\n",
 | 
						|
    "agent = initialize_agent(tools, OpenAI(temperature=0), agent=\"zero-shot-react-description\")\n"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "68504a8f",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## Make a prediction\n",
 | 
						|
    "\n",
 | 
						|
    "First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 7,
 | 
						|
   "id": "cbcafc92",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "text/plain": [
 | 
						|
       "'38,630,316 people live in Canada as of 2023.'"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "execution_count": 7,
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "execute_result"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "agent.run(dataset[0]['question'])"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "d0c16cd7",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## Make many predictions\n",
 | 
						|
    "Now we can make predictions"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 8,
 | 
						|
   "id": "24b4c66e",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stderr",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "Retrying langchain.llms.openai.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIConnectionError: Error communicating with OpenAI: ('Connection aborted.', ConnectionResetError(54, 'Connection reset by peer')).\n"
 | 
						|
     ]
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "predictions = []\n",
 | 
						|
    "predicted_dataset = []\n",
 | 
						|
    "error_dataset = []\n",
 | 
						|
    "for data in dataset:\n",
 | 
						|
    "    new_data = {\"input\": data[\"question\"], \"answer\": data[\"answer\"]}\n",
 | 
						|
    "    try:\n",
 | 
						|
    "        predictions.append(agent(new_data))\n",
 | 
						|
    "        predicted_dataset.append(new_data)\n",
 | 
						|
    "    except Exception:\n",
 | 
						|
    "        error_dataset.append(new_data)"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "49d969fb",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## Evaluate performance\n",
 | 
						|
    "Now we can evaluate the predictions. The first thing we can do is look at them by eye."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 9,
 | 
						|
   "id": "1d583f03",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "text/plain": [
 | 
						|
       "{'input': 'How many people live in canada as of 2023?',\n",
 | 
						|
       " 'answer': 'approximately 38,625,801',\n",
 | 
						|
       " 'output': '38,630,316 people live in Canada as of 2023.',\n",
 | 
						|
       " 'intermediate_steps': [(AgentAction(tool='Search', tool_input='Population of Canada 2023', log=' I need to find population data\\nAction: Search\\nAction Input: Population of Canada 2023'),\n",
 | 
						|
       "   '38,630,316')]}"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "execution_count": 9,
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "execute_result"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "predictions[0]"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "4783344b",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "Next, we can use a language model to score them programatically"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 10,
 | 
						|
   "id": "d0a9341d",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "from langchain.evaluation.qa import QAEvalChain"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 14,
 | 
						|
   "id": "1612dec1",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "llm = OpenAI(temperature=0)\n",
 | 
						|
    "eval_chain = QAEvalChain.from_llm(llm)\n",
 | 
						|
    "graded_outputs = eval_chain.evaluate(dataset, predictions, question_key=\"question\", prediction_key=\"output\")"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "79587806",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "We can add in the graded output to the `predictions` dict and then get a count of the grades."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 15,
 | 
						|
   "id": "2a689df5",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "for i, prediction in enumerate(predictions):\n",
 | 
						|
    "    prediction['grade'] = graded_outputs[i]['text']"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 16,
 | 
						|
   "id": "27b61215",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "text/plain": [
 | 
						|
       "Counter({' CORRECT': 4, ' INCORRECT': 6})"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "execution_count": 16,
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "execute_result"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "from collections import Counter\n",
 | 
						|
    "Counter([pred['grade'] for pred in predictions])"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "id": "12fe30f4",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "We can also filter the datapoints to the incorrect examples and look at them."
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 17,
 | 
						|
   "id": "47c692a1",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "incorrect = [pred for pred in predictions if pred['grade'] == \" INCORRECT\"]"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 18,
 | 
						|
   "id": "0ef976c1",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "data": {
 | 
						|
      "text/plain": [
 | 
						|
       "{'input': \"who is dua lipa's boyfriend? what is his age raised to the .43 power?\",\n",
 | 
						|
       " 'answer': 'her boyfriend is Romain Gravas. his age raised to the .43 power is approximately 4.9373857399466665',\n",
 | 
						|
       " 'output': \"Isaac Carew, Dua Lipa's boyfriend, is 36 years old and his age raised to the .43 power is 4.6688516567750975.\",\n",
 | 
						|
       " 'intermediate_steps': [(AgentAction(tool='Search', tool_input=\"Dua Lipa's boyfriend\", log=' I need to find out who Dua Lipa\\'s boyfriend is and then calculate his age raised to the .43 power\\nAction: Search\\nAction Input: \"Dua Lipa\\'s boyfriend\"'),\n",
 | 
						|
       "   'Dua and Isaac, a model and a chef, dated on and off from 2013 to 2019. The two first split in early 2017, which is when Dua went on to date LANY ...'),\n",
 | 
						|
       "  (AgentAction(tool='Search', tool_input='Isaac Carew age', log=' I need to find out Isaac\\'s age\\nAction: Search\\nAction Input: \"Isaac Carew age\"'),\n",
 | 
						|
       "   '36 years'),\n",
 | 
						|
       "  (AgentAction(tool='Calculator', tool_input='36^.43', log=' I need to calculate 36 raised to the .43 power\\nAction: Calculator\\nAction Input: 36^.43'),\n",
 | 
						|
       "   'Answer: 4.6688516567750975\\n')],\n",
 | 
						|
       " 'grade': ' INCORRECT'}"
 | 
						|
      ]
 | 
						|
     },
 | 
						|
     "execution_count": 18,
 | 
						|
     "metadata": {},
 | 
						|
     "output_type": "execute_result"
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "incorrect[0]"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": null,
 | 
						|
   "id": "7710401a",
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": []
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "Python 3 (ipykernel)",
 | 
						|
   "language": "python",
 | 
						|
   "name": "python3"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.9.1"
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 5
 | 
						|
}
 |