mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-16 11:58:51 +00:00
143 lines
5.1 KiB
Python
143 lines
5.1 KiB
Python
"""Test OllamaFunctions"""
|
|
|
|
import unittest
|
|
|
|
from langchain_community.tools import DuckDuckGoSearchResults
|
|
from langchain_community.tools.pubmed.tool import PubmedQueryRun
|
|
from langchain_core.messages import AIMessage
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
|
|
from langchain_experimental.llms.ollama_functions import (
|
|
OllamaFunctions,
|
|
convert_to_ollama_tool,
|
|
)
|
|
|
|
|
|
class Joke(BaseModel):
|
|
setup: str = Field(description="The setup of the joke")
|
|
punchline: str = Field(description="The punchline to the joke")
|
|
|
|
|
|
class TestOllamaFunctions(unittest.TestCase):
|
|
"""
|
|
Test OllamaFunctions
|
|
"""
|
|
|
|
def test_default_ollama_functions(self) -> None:
|
|
base_model = OllamaFunctions(model="phi3", format="json")
|
|
|
|
# bind functions
|
|
model = base_model.bind_tools(
|
|
tools=[
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, "
|
|
"e.g. San Francisco, CA",
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"],
|
|
},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
],
|
|
function_call={"name": "get_current_weather"},
|
|
)
|
|
|
|
res = model.invoke("What's the weather in San Francisco?")
|
|
|
|
self.assertIsInstance(res, AIMessage)
|
|
res = AIMessage(**res.__dict__)
|
|
tool_calls = res.tool_calls
|
|
assert tool_calls
|
|
tool_call = tool_calls[0]
|
|
assert tool_call
|
|
self.assertEqual("get_current_weather", tool_call.get("name"))
|
|
|
|
def test_ollama_functions_tools(self) -> None:
|
|
base_model = OllamaFunctions(model="phi3", format="json")
|
|
model = base_model.bind_tools(
|
|
tools=[PubmedQueryRun(), DuckDuckGoSearchResults(max_results=2)]
|
|
)
|
|
res = model.invoke("What causes lung cancer?")
|
|
self.assertIsInstance(res, AIMessage)
|
|
res = AIMessage(**res.__dict__)
|
|
tool_calls = res.tool_calls
|
|
assert tool_calls
|
|
tool_call = tool_calls[0]
|
|
assert tool_call
|
|
self.assertEqual("pub_med", tool_call.get("name"))
|
|
|
|
def test_default_ollama_functions_default_response(self) -> None:
|
|
base_model = OllamaFunctions(model="phi3", format="json")
|
|
|
|
# bind functions
|
|
model = base_model.bind_tools(
|
|
tools=[
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, "
|
|
"e.g. San Francisco, CA",
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"],
|
|
},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
]
|
|
)
|
|
|
|
res = model.invoke("What is the capital of France?")
|
|
|
|
self.assertIsInstance(res, AIMessage)
|
|
res = AIMessage(**res.__dict__)
|
|
tool_calls = res.tool_calls
|
|
if len(tool_calls) > 0:
|
|
tool_call = tool_calls[0]
|
|
assert tool_call
|
|
self.assertEqual("__conversational_response", tool_call.get("name"))
|
|
|
|
def test_ollama_structured_output(self) -> None:
|
|
model = OllamaFunctions(model="phi3")
|
|
structured_llm = model.with_structured_output(Joke, include_raw=False)
|
|
|
|
res = structured_llm.invoke("Tell me a joke about cats")
|
|
assert isinstance(res, Joke)
|
|
|
|
def test_ollama_structured_output_with_json(self) -> None:
|
|
model = OllamaFunctions(model="phi3")
|
|
joke_schema = convert_to_ollama_tool(Joke)
|
|
structured_llm = model.with_structured_output(joke_schema, include_raw=False)
|
|
|
|
res = structured_llm.invoke("Tell me a joke about cats")
|
|
assert "setup" in res
|
|
assert "punchline" in res
|
|
|
|
def test_ollama_structured_output_raw(self) -> None:
|
|
model = OllamaFunctions(model="phi3")
|
|
structured_llm = model.with_structured_output(Joke, include_raw=True)
|
|
|
|
res = structured_llm.invoke("Tell me a joke about cars")
|
|
assert isinstance(res, dict)
|
|
assert "raw" in res
|
|
assert "parsed" in res
|
|
assert isinstance(res["raw"], AIMessage)
|
|
assert isinstance(res["parsed"], Joke)
|