mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-29 15:28:54 +00:00
**Description:** This PR fixes `HuggingFaceHubEmbeddings` by making the API token optional (as in the client beneath). Most models don't require one. I also updated the notebook for TEI (text-embeddings-inference) accordingly as requested here #14288. In addition, I fixed a mistake in the POST call parameters. **Tag maintainers:** @baskaryan
169 lines
3.8 KiB
Plaintext
169 lines
3.8 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ceabf1eb-ca96-4791-90ad-e9acb31edf5c",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Text Embeddings Inference\n",
|
|
"\n",
|
|
"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.\n",
|
|
"\n",
|
|
"To use it within langchain, first install `huggingface-hub`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "579f0677-aa06-4ad8-a816-3520c8d6923c",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install huggingface-hub -q"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7c6b1015-bc3f-4283-93d5-11387be1b98d",
|
|
"metadata": {},
|
|
"source": [
|
|
"Then expose an embedding model using TEI. For instance, using Docker, you can serve `BAAI/bge-large-en-v1.5` as follows:\n",
|
|
"\n",
|
|
"```bash\n",
|
|
"model=BAAI/bge-large-en-v1.5\n",
|
|
"revision=refs/pr/5\n",
|
|
"volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run\n",
|
|
"\n",
|
|
"docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:0.6 --model-id $model --revision $revision\n",
|
|
"```"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "48eebefc-a631-48dd-9bde-4a987f81aa20",
|
|
"metadata": {},
|
|
"source": [
|
|
"Finally, instantiate the client and embed your texts."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "22b09777-5ba3-4fbe-81cf-a702a55df9c4",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.embeddings import HuggingFaceHubEmbeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "f9a92970-16f4-458c-b186-2a83e9f7d840",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"embeddings = HuggingFaceHubEmbeddings(model=\"http://localhost:8080\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "42105438-9fee-460a-9c52-b7c595722758",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"text = \"What is deep learning?\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "20167762-0988-4205-bbd4-1f20fd9dd247",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[0.018113142, 0.00302585, -0.049911194]"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"query_result = embeddings.embed_query(text)\n",
|
|
"query_result[:3]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "54b87cf6-86ad-46f5-b2cd-17eb43cb4d0b",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"doc_result = embeddings.embed_documents([text])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "6fba8be9-fabf-4972-8334-aa56ed9893e1",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[0.018113142, 0.00302585, -0.049911194]"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"doc_result[0][:3]"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "conda_python3",
|
|
"language": "python",
|
|
"name": "conda_python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.13"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|